Binary Options Pro Signals

二元期权交易信号服务
提供基于14种资产的实时交易信号,包括股票、指数和货币等,通过短信或邮件发送。使用专有预测软件,准确率高达72.5%,无需复杂公式或系统即可轻松交易。

About Our Signals

Binary Options are simply investments which you make based on whether the current price of an asset will rise or fall by the expiration time.

The reason binary options are so popular is because of their amazing payout amounts. You can generate up to 75% of your investment on every winning trade.

B.O.P.S. trading signals are the easiest to read and can make even the newest binary option trader successful.

image

image

 

Trade Stocks, Indexes, 
and Currencies



Delivery

Signals are sent via SMS Text or Email and our signals are delivered in Real Time whenever our software indicates a high probability trading opportunity.

With multiple signals throughout the London and U.S. market sessions, there will be many opportunities for winning trades!

image


image

With Binary Options Pro Signals
You can Make Up to 75% Per Trade
Without Complicated Formulas or 
Systems or Robots

This is NOT just for "Traders" 
This is for ANYONE who wants to start making REAL MONEY...
even if you've never made a trade in your life.

X No setting stop losses or target limits 
X No worrying about exiting too soon 
X No staying in a trade too long 
X No margin calls – risk is clearly defined 
X No calculating lot sizes – set the amount you want to trade 
X No difficult trading decisions – signals are clear and simple 
X No wasted time and effort – trading is quick and easy 



image

 

Now ANYONE Can Trade For Fun And Profit!

 Trade stocks, indexes, and currencies 
 Make up to 75% per TRADE 
 No commissions or fees 
 24 Hour market – trade whenever you want 
 Multiple trading signals every day 
 Amazing 72.5% accuracy creates remarkable results 
 Easy to withdraw your profits


image

 

Here's How The Binary Options Pro Signals Service Works

• When you subscribe, you will be sent Real Time Signals based 
   on monitoring of 14 selected assets.

• The signals will be sent in real time via Email or SMS/Text 
   messaging right to your phone!

• The signals include asset, entry price, direction (CALL or PUT), 
   and expiry time.

• Once you receive the signal, log into your broker account 
   and place the trade

• Choose from U.S. and European sessions (or both).


image

 

Our Software Is Built On Cutting Edge Technology That Predicts The Movement Of Each Asset We Monitor.

• How are we able to predict short term market direction with 
   72.5% average accuracy across all markets we monitor?

• The answer lies in the combination of trading algorithms and 
   technological advance that has finally allowed us to produce 
   the B.O.P.S. signals through the power and sophistication 
   of our next generation predictive software.

• We don't care if the market goes up or down - you can 
   make money either way.


image

 

Available Underlying Assets

Binary Options Pro Signals monitors 14 assets through London and U.S. market sessions: EURUSD, GBPUSD, USDCHF, AUDUSD, USDCAD, EURJPY, Apple, Google, IBM, JP Morgan Chase, Coca-Cola, ExxonMobil, Dow Jones, and S&P 500.

Note: Assets may be added and/or changed periodically. Every asset does not generate a signal in every market session.





Note: Past performance is not necessarily indicative of future results.
image

 

So Let's See If Our Service Is Right For You:

• Have you been in the market as an investor or trader and been 
   disappointed with the results?

• Do you stay away from the markets because you think they are 
   too risky?

• Are you confused by technical and fundamental analysis?

• Would you like to stop GUESSING which direction the markets 
   are going, and take professional signals from next generation 
   software?

• Does the idea of risk vs reward make sense to you?

• Does the idea of trading something NEW like binary options for 
   FUN and PROFIT sound good to you?


image

 

Here's What You'll Be Getting When You Subscribe...

1. B.O.P.S. signals for up to 14 assets delivered via Email or 
    SMS/Text message in real time right to your phone

2. Choice of U.S. and/or European sessions

3. Average of 6 to 12 signals per day

4. Access to our Members Area with valuable tips and info

5. List of our recommended brokers for best executions and 
    payoffs

6. Lifetime updates to service

7. Subscription rate locked for life




Try Our 14 Day - $14 Trial!



You will be billed $14.00 for the first 14 days and then $97.00 every month until you cancel.
Binary Options Pro Signals are sent in Real Time via Email and SMS text message updates.


60 DAY MONEY BACK GUARANTEE


Fast and Secure Shipping! SilverGoldBull.com


import os import sys import cv2 import numpy as np import subprocess import tempfile import shutil import random import wave import struct from PIL import Image, ImageDraw, ImageFont # 尝试导入PyQt5,如果失败则提供友好的错误信息 try: from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QPushButton, QLabel, QFileDialog, QMessageBox, QProgressBar, QGroupBox, QTextEdit, QCheckBox, QListWidget, QListWidgetItem, QComboBox) from PyQt5.QtCore import Qt, QThread, pyqtSignal from PyQt5.QtGui import QFont, QPalette, QColor except ImportError: print("错误: 需要安装PyQt5库") print("请运行: pip install PyQt5") sys.exit(1) # 尝试导入GPU相关库 try: import pyopencl as cl OPENCL_AVAILABLE = True except ImportError: OPENCL_AVAILABLE = False try: import cupy as cp CUDA_AVAILABLE = True except ImportError: CUDA_AVAILABLE = False class AudioSteganography: """音频隐写处理类""" @staticmethod def embed_message(audio_path, message, output_path): """使用改进的LSB算法在音频中嵌入消息""" try: # 读取音频文件 with wave.open(audio_path, 'rb') as audio: params = audio.getparams() frames = audio.readframes(audio.getnframes()) # 将音频数据转换为字节数组 audio_data = bytearray(frames) # 将消息转换为二进制 binary_message = ''.join(format(ord(char), '08b') for char in message) binary_message += '00000000' # 添加终止符 # 检查音频容量是否足够 if len(binary_message) > len(audio_data) * 8: raise ValueError("音频文件太小,无法嵌入消息") # 使用改进的LSB算法嵌入消息(每4个样本嵌入1位) sample_interval = 4 # 每4个样本嵌入1位 message_index = 0 for i in range(0, len(audio_data), sample_interval): if message_index >= len(binary_message): break # 修改每个样本的最低有效位 audio_data[i] = (audio_data[i] & 0xFE) | int(binary_message[message_index]) message_index += 1 # 保存带有隐写信息的音频 with wave.open(output_path, 'wb') as output_audio: output_audio.setparams(params) output_audio.writeframes(bytes(audio_data)) return True, "音频隐写成功" except Exception as e: return False, f"音频隐写失败: {str(e)}" @staticmethod def extract_message(audio_path): """从音频中提取隐藏的消息""" try: # 读取音频文件 with wave.open(audio_path, 'rb') as audio: frames = audio.readframes(audio.getnframes()) # 将音频数据转换为字节数组 audio_data = bytearray(frames) # 提取LSB位 binary_message = '' sample_interval = 4 # 与嵌入时保持一致 for i in range(0, len(audio_data), sample_interval): binary_message += str(audio_data[i] & 1) # 将二进制转换为字符 message = '' for i in range(0, len(binary_message), 8): byte = binary_message[i:i+8] if len(byte) < 8: break char = chr(int(byte, 2)) if char == '\0': # 遇到终止符停止 break message += char return True, message except Exception as e: return False, f"消息提取失败: {str(e)}" class VideoProcessor(QThread): progress_updated = pyqtSignal(int) status_updated = pyqtSignal(str) finished = pyqtSignal(bool, str) batch_progress = pyqtSignal(int, int) # 当前处理, 总计 def __init__(self, video_a_path, video_b_paths, output_dir, use_gpu=False, gpu_type="auto"): super().__init__() self.video_a_path = video_a_path self.video_b_paths = video_b_paths self.output_dir = output_dir self.use_gpu = use_gpu self.gpu_type = gpu_type self.temp_dir = tempfile.mkdtemp() self.gpu_context = None self.gpu_queue = None self.gpu_device = None # 初始化GPU环境 if self.use_gpu: self.init_gpu() def init_gpu(self): """初始化GPU环境""" try: if self.gpu_type == "cuda" or (self.gpu_type == "auto" and CUDA_AVAILABLE): # 使用CUDA self.status_updated.emit("初始化CUDA环境...") # 检查可用GPU devices = cp.cuda.runtime.getDeviceCount() if devices > 0: self.status_updated.emit(f"找到 {devices} 个NVIDIA GPU") # 使用第一个可用的GPU cp.cuda.Device(0).use() self.gpu_type = "cuda" return True else: self.status_updated.emit("未找到NVIDIA GPU,尝试使用OpenCL") self.gpu_type = "opencl" if self.gpu_type == "opencl" or (self.gpu_type == "auto" and OPENCL_AVAILABLE): # 使用OpenCL self.status_updated.emit("初始化OpenCL环境...") platforms = cl.get_platforms() # 优先寻找Intel Arc显卡 intel_arc_found = False for platform in platforms: devices = platform.get_devices(device_type=cl.device_type.GPU) for device in devices: device_name = device.name if "Intel" in device_name and ("Arc" in device_name or "A770" in device_name): self.status_updated.emit(f"找到Intel Arc显卡: {device_name}") self.gpu_context = cl.Context([device]) self.gpu_queue = cl.CommandQueue(self.gpu_context) self.gpu_device = device self.gpu_type = "opencl" intel_arc_found = True break if intel_arc_found: break # 如果没有找到Intel Arc,寻找其他GPU if not intel_arc_found: for platform in platforms: devices = platform.get_devices(device_type=cl.device_type.GPU) if devices: self.gpu_context = cl.Context(devices) self.gpu_queue = cl.CommandQueue(self.gpu_context) self.gpu_device = devices[0] self.status_updated.emit(f"找到OpenCL GPU: {devices[0].name}") self.gpu_type = "opencl" return True # 如果没有找到GPU,尝试使用CPU if not intel_arc_found: for platform in platforms: devices = platform.get_devices(device_type=cl.device_type.CPU) if devices: self.gpu_context = cl.Context(devices) self.gpu_queue = cl.CommandQueue(self.gpu_context) self.gpu_device = devices[0] self.status_updated.emit(f"使用OpenCL CPU: {devices[0].name}") self.gpu_type = "opencl" return True self.status_updated.emit("未找到OpenCL设备,将使用CPU") self.use_gpu = False return False else: self.status_updated.emit("未安装GPU支持库,将使用CPU") self.use_gpu = False return False except Exception as e: self.status_updated.emit(f"GPU初始化失败: {str(e)},将使用CPU") self.use_gpu = False return False def run(self): try: # 创建OK文件夹 ok_dir = os.path.join(self.output_dir, "OK") os.makedirs(ok_dir, exist_ok=True) total_videos = len(self.video_b_paths) for idx, video_b_path in enumerate(self.video_b_paths): output_filename = f"output_{os.path.basename(video_b_path).split('.')[0]}.mp4" output_path = os.path.join(ok_dir, output_filename) self.batch_progress.emit(idx + 1, total_videos) self.status_updated.emit(f"处理视频 {idx + 1}/{total_videos}: {os.path.basename(video_b_path)}") # 处理单个视频对 success, message = self.process_single_video(self.video_a_path, video_b_path, output_path) if not success: self.finished.emit(False, f"处理失败: {message}") return self.finished.emit(True, f"批量处理完成!共处理 {total_videos} 个视频,输出保存在 {ok_dir}") except Exception as e: import traceback error_details = traceback.format_exc() self.finished.emit(False, f"处理过程中出现错误: {str(e)}\n详细信息:\n{error_details}") finally: # 清理临时文件 if os.path.exists(self.temp_dir): try: shutil.rmtree(self.temp_dir) except: pass def process_single_video(self, video_a_path, video_b_path, output_path): """处理单个视频对""" try: self.status_updated.emit("开始处理视频...") # 提取音频 self.status_updated.emit("提取音频...") audio_path = self.extract_audio(video_a_path) self.progress_updated.emit(10) # 处理视频A self.status_updated.emit("处理视频A...") a_frames_dir = self.process_video_a(video_a_path) self.progress_updated.emit(30) # 处理视频B self.status_updated.emit("处理视频B...") b_frames_dir = self.process_video_b(video_b_path, len(os.listdir(a_frames_dir))) self.progress_updated.emit(50) # 嵌入隐写 self.status_updated.emit("嵌入隐写信息...") stego_frames_dir = self.embed_steganography(a_frames_dir, b_frames_dir) self.progress_updated.emit(70) # 处理音频并合成最终视频 self.status_updated.emit("处理音频并合成最终视频...") self.process_audio_and_assemble(stego_frames_dir, audio_path, output_path) self.progress_updated.emit(90) # 添加随机元数据 self.status_updated.emit("添加元数据...") self.add_random_metadata(output_path) self.progress_updated.emit(100) return True, "处理完成" except Exception as e: import traceback error_details = traceback.format_exc() return False, f"处理过程中出现错误: {str(e)}\n详细信息:\n{error_details}" def extract_audio(self, video_path): """提取音频并转换为单声道""" audio_path = os.path.join(self.temp_dir, "audio.wav") # 使用ffmpeg提取音频并转换为单声道 cmd = [ 'ffmpeg', '-i', video_path, '-vn', '-ac', '1', '-ar', '44100', '-y', audio_path ] try: subprocess.run(cmd, check=True, capture_output=True) return audio_path except subprocess.CalledProcessError as e: # 如果提取失败,创建一个空的音频文件 self.status_updated.emit("警告: 无法提取音频,将创建空音频") open(audio_path, 'a').close() return audio_path def process_video_a(self, video_path): """处理视频A""" # 创建输出目录 output_dir = os.path.join(self.temp_dir, "video_a_frames") os.makedirs(output_dir, exist_ok=True) # 获取视频信息 cap = cv2.VideoCapture(video_path) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = cap.get(cv2.CAP_PROP_FPS) width, height = 1080, 2336 # 生成不可见黑色扰动背景 for i in range(total_frames): # 创建带有轻微扰动的黑色背景 background = np.random.randint(0, 3, (height, width, 3), dtype=np.uint8) # 读取原始帧 ret, frame = cap.read() if not ret: break # 调整原始帧大小并居中放置 h, w = frame.shape[:2] scale = min((width-10)/w, (height-10)/h) new_w, new_h = int(w * scale), int(h * scale) resized_frame = cv2.resize(frame, (new_w, new_h)) # 将调整后的帧放置在背景上,设置不透明度为98% x_offset = (width - new_w) // 2 y_offset = (height - new_h) // 2 # 创建叠加层 overlay = background.copy() roi = overlay[y_offset:y_offset+new_h, x_offset:x_offset+new_w] # 使用加权叠加实现98%不透明度 cv2.addWeighted(resized_frame, 0.98, roi, 0.02, 0, roi) # 保存帧 cv2.imwrite(os.path.join(output_dir, f"frame_{i:06d}.png"), overlay) # 更新进度 if i % 10 == 0: self.status_updated.emit(f"处理视频A帧: {i}/{total_frames}") cap.release() return output_dir def process_video_b(self, video_path, total_frames_needed): """处理视频B""" # 创建输出目录 output_dir = os.path.join(self.temp_dir, "video_b_frames") os.makedirs(output_dir, exist_ok=True) # 获取视频B的信息 cap_b = cv2.VideoCapture(video_path) total_frames_b = int(cap_b.get(cv2.CAP_PROP_FRAME_COUNT)) fps_b = cap_b.get(cv2.CAP_PROP_FPS) width, height = 1080, 2336 # 计算需要从视频B中提取的帧 start_frame = 0 if total_frames_b > total_frames_needed: start_frame = random.randint(0, total_frames_b - total_frames_needed) # 生成不可见黑色扰动背景并处理视频B for i in range(total_frames_needed): # 创建带有轻微扰动的黑色背景 background = np.random.randint(0, 3, (height, width, 3), dtype=np.uint8) # 读取原始帧(从适当的位置) frame_idx = min(start_frame + i, total_frames_b - 1) cap_b.set(cv2.CAP_PROP_POS_FRAMES, frame_idx) ret, frame = cap_b.read() if not ret: break # 调整原始帧大小并居中放置 h, w = frame.shape[:2] scale = min((width-10)/w, (height-10)/h) new_w, new_h = int(w * scale), int(h * scale) resized_frame = cv2.resize(frame, (new_w, new_h)) # 将调整后的帧放置在背景上 x_offset = (width - new_w) // 2 y_offset = (height - new_h) // 2 # 创建叠加层 overlay = background.copy() roi = overlay[y_offset:y_offset+new_h, x_offset:x_offset+new_w] # 叠加帧 cv2.addWeighted(resized_frame, 1.0, roi, 0.0, 0, roi) # 保存帧 cv2.imwrite(os.path.join(output_dir, f"frame_{i:06d}.png"), overlay) # 更新进度 if i % 10 == 0: self.status_updated.emit(f"处理视频B帧: {i}/{total_frames_needed}") cap_b.release() return output_dir def dct_embed_gpu(self, carrier, secret): """使用GPU加速的DCT隐写""" if self.gpu_type == "cuda" and CUDA_AVAILABLE and self.use_gpu: # 使用CuPy进行GPU加速 carrier_gpu = cp.asarray(carrier) secret_gpu = cp.asarray(secret) # 转换为YUV颜色空间 carrier_yuv = cp.zeros_like(carrier_gpu) secret_yuv = cp.zeros_like(secret_gpu) # RGB到YUV转换矩阵 transform = cp.array([[0.299, 0.587, 0.114], [-0.14713, -0.28886, 0.436], [0.615, -0.51499, -0.10001]]) # 应用转换矩阵 for i in range(carrier_gpu.shape[0]): for j in range(carrier_gpu.shape[1]): carrier_yuv[i, j] = cp.dot(transform, carrier_gpu[i, j]) secret_yuv[i, j] = cp.dot(transform, secret_gpu[i, j]) # 只使用Y通道进行DCT变换 carrier_y = carrier_yuv[:,:,0].astype(cp.float32) secret_y = secret_yuv[:,:,0].astype(cp.float32) # 对载体和秘密图像进行DCT变换 carrier_dct = cp.fft.dct(cp.fft.dct(carrier_y, axis=0), axis=1) secret_dct = cp.fft.dct(cp.fft.dct(secret_y, axis=0), axis=1) # 嵌入强度因子 alpha = 0.03 # 在DCT域中嵌入秘密图像 stego_dct = carrier_dct + alpha * secret_dct # 进行逆DCT变换 stego_y = cp.fft.idct(cp.fft.idct(stego_dct, axis=1), axis=0) # 将结果放回YUV图像中 stego_yuv = carrier_yuv.copy() stego_yuv[:,:,0] = stego_y # YUV到RGB转换矩阵 inv_transform = cp.linalg.inv(transform) # 转换回RGB颜色空间 stego_bgr = cp.zeros_like(stego_yuv) for i in range(stego_yuv.shape[0]): for j in range(stego_yuv.shape[1]): stego_bgr[i, j] = cp.dot(inv_transform, stego_yuv[i, j]) return cp.clip(stego_bgr, 0, 255).astype(cp.uint8).get() elif self.gpu_type == "opencl" and OPENCL_AVAILABLE and self.use_gpu and self.gpu_context: # 使用OpenCL进行GPU加速,特别优化Intel Arc显卡 return self.dct_embed_opencl(carrier, secret) else: # 使用CPU版本 return self.dct_embed_cpu(carrier, secret) def dct_embed_opencl(self, carrier, secret): """使用OpenCL进行DCT隐写,特别优化Intel Arc显卡""" try: # 将图像转换为YUV颜色空间 carrier_yuv = cv2.cvtColor(carrier, cv2.COLOR_BGR2YUV) secret_yuv = cv2.cvtColor(secret, cv2.COLOR_BGR2YUV) # 只使用Y通道进行DCT变换 carrier_y = carrier_yuv[:,:,0].astype(np.float32) secret_y = secret_yuv[:,:,0].astype(np.float32) # 创建OpenCL缓冲区 carrier_buffer = cl.Buffer(self.gpu_context, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf=carrier_y) secret_buffer = cl.Buffer(self.gpu_context, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf=secret_y) # 创建输出缓冲区 stego_dct_buffer = cl.Buffer(self.gpu_context, cl.mem_flags.WRITE_ONLY, carrier_y.nbytes) stego_y_buffer = cl.Buffer(self.gpu_context, cl.mem_flags.WRITE_ONLY, carrier_y.nbytes) # 编译OpenCL程序 dct_program = cl.Program(self.gpu_context, """ __kernel void dct_embed(__global float* carrier, __global float* secret, __global float* stego_dct, __global float* stego_y, float alpha, int width, int height) { int x = get_global_id(0); int y = get_global_id(1); int idx = y * width + x; // DCT变换 (简化实现) // 在实际应用中,这里应该实现完整的2D DCT算法 // 这里使用简化的DCT近似 float dct_carrier = carrier[idx] * cos((2*x+1)*y*M_PI/(2*width)); float dct_secret = secret[idx] * cos((2*x+1)*y*M_PI/(2*width)); // 嵌入秘密图像 stego_dct[idx] = dct_carrier + alpha * dct_secret; // 逆DCT变换 stego_y[idx] = stego_dct[idx] * cos((2*x+1)*y*M_PI/(2*width)); } """).build() # 设置内核参数 width, height = carrier_y.shape[1], carrier_y.shape[0] alpha = np.float32(0.03) # 执行内核 dct_program.dct_embed(self.gpu_queue, carrier_y.shape, None, carrier_buffer, secret_buffer, stego_dct_buffer, stego_y_buffer, alpha, np.int32(width), np.int32(height)) # 读取结果 stego_y = np.empty_like(carrier_y) cl.enqueue_copy(self.gpu_queue, stego_y, stego_y_buffer) # 将结果放回YUV图像中 stego_yuv = carrier_yuv.copy() stego_yuv[:,:,0] = stego_y # 转换回BGR颜色空间 stego_bgr = cv2.cvtColor(stego_yuv, cv2.COLOR_YUV2BGR) return np.clip(stego_bgr, 0, 255).astype(np.uint8) except Exception as e: self.status_updated.emit(f"OpenCL处理失败: {str(e)},将使用CPU") return self.dct_embed_cpu(carrier, secret) def dct_embed_cpu(self, carrier, secret): """在DCT域中嵌入秘密图像(CPU版本)""" # 将图像转换为YUV颜色空间 carrier_yuv = cv2.cvtColor(carrier, cv2.COLOR_BGR2YUV) secret_yuv = cv2.cvtColor(secret, cv2.COLOR_BGR2YUV) # 只使用Y通道进行DCT变换 carrier_y = carrier_yuv[:,:,0].astype(np.float32) secret_y = secret_yuv[:,:,0].astype(np.float32) # 对载体和秘密图像进行DCT变换 carrier_dct = cv2.dct(carrier_y) secret_dct = cv2.dct(secret_y) # 嵌入强度因子 alpha = 0.03 # 在DCT域中嵌入秘密图像 stego_dct = carrier_dct + alpha * secret_dct # 进行逆DCT变换 stego_y = cv2.idct(stego_dct) # 将结果放回YUV图像中 stego_yuv = carrier_yuv.copy() stego_yuv[:,:,0] = stego_y # 转换回BGR颜色空间 stego_bgr = cv2.cvtColor(stego_yuv, cv2.COLOR_YUV2BGR) return np.clip(stego_bgr, 0, 255).astype(np.uint8) def embed_steganography(self, a_frames_dir, b_frames_dir): """嵌入隐写信息""" # 创建输出目录 output_dir = os.path.join(self.temp_dir, "stego_frames") os.makedirs(output_dir, exist_ok=True) # 获取帧列表 a_frames = sorted([f for f in os.listdir(a_frames_dir) if f.endswith('.png')]) total_frames = len(a_frames) for i, frame_name in enumerate(a_frames): # 读取A视频帧 carrier_frame = cv2.imread(os.path.join(a_frames_dir, frame_name)) # 读取B视频帧 secret_frame = cv2.imread(os.path.join(b_frames_dir, frame_name)) # 调整秘密图像大小以匹配载体图像 secret_frame = cv2.resize(secret_frame, (carrier_frame.shape[1], carrier_frame.shape[0])) # 在DCT域中嵌入秘密图像 if self.use_gpu: stego_frame = self.dct_embed_gpu(carrier_frame, secret_frame) else: stego_frame = self.dct_embed_cpu(carrier_frame, secret_frame) # 添加数字水印(版权保护)- 透明度极低,人眼几乎不可见 stego_frame = self.add_watermark(stego_frame) # 保存处理后的帧 cv2.imwrite(os.path.join(output_dir, frame_name), stego_frame) # 更新进度 if i % 10 == 0: self.status_updated.emit(f"嵌入隐写帧: {i}/{total_frames}") return output_dir def add_watermark(self, image): """添加数字水印 - 透明度极低,人眼几乎不可见""" # 将OpenCV图像转换为PIL图像 pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) # 创建一个绘图对象 draw = ImageDraw.Draw(pil_image, 'RGBA') # 使用默认字体 try: font = ImageFont.load_default() # 尝试加载系统字体 try: font = ImageFont.truetype("arial.ttf", 20) except: pass except: pass # 添加水印文本 - 使用极低的透明度 (约2%) watermark_text = "Copyright Protected" # 获取文本尺寸 try: # 对于较新版本的Pillow bbox = draw.textbbox((0, 0), watermark_text, font=font) text_width = bbox[2] - bbox[0] text_height = bbox[3] - bbox[1] except: # 对于较旧版本的Pillow try: text_width, text_height = draw.textsize(watermark_text, font=font) except: # 如果所有方法都失败,使用估计值 text_width, text_height = 150, 20 # 在多个位置添加水印 positions = [ (10, 10), (image.shape[1] - text_width - 10, 10), (10, image.shape[0] - text_height - 10), (image.shape[1] - text_width - 10, image.shape[0] - text_height - 10) ] for position in positions: # 添加文本 - 使用极低的透明度 (约2%) draw.text(position, watermark_text, (255, 255, 255, 5), font=font) # 转换回OpenCV图像 return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) def process_audio_and_assemble(self, frames_dir, audio_path, output_path): """处理音频并合成最终视频""" # 生成随机噪声音频 noise_audio_path = os.path.join(self.temp_dir, "noise_audio.wav") # 获取音频信息 try: cmd = ['ffprobe', '-i', audio_path, '-show_entries', 'format=duration', '-v', 'quiet', '-of', 'csv=p=0'] result = subprocess.run(cmd, capture_output=True, text=True) duration = float(result.stdout.strip()) # 生成随机噪声(极低音量) sample_rate = 44100 t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False) noise = 0.0005 * np.random.randn(len(t)) # 极低音量噪声 # 保存噪声音频 import scipy.io.wavfile as wavfile wavfile.write(noise_audio_path, sample_rate, noise.astype(np.float32)) except: # 如果生成噪声失败,创建一个空的音频文件 open(noise_audio_path, 'a').close() # 在音频中嵌入隐写信息 stego_audio_path = os.path.join(self.temp_dir, "stego_audio.wav") message = "HiddenSteganoMessage2023" success, msg = AudioSteganography.embed_message(audio_path, message, stego_audio_path) if not success: self.status_updated.emit(f"音频隐写警告: {msg}") stego_audio_path = audio_path # 使用原始音频 # 合并音频(左声道为隐写音频,右声道为噪声) mixed_audio_path = os.path.join(self.temp_dir, "mixed_audio.wav") cmd = [ 'ffmpeg', '-y', '-i', stego_audio_path, '-i', noise_audio_path, '-filter_complex', '[0:a][1:a]amerge=inputs=2,pan=stereo|c0<c0+c1|c1<c2+c3[aout]', '-map', '[aout]', mixed_audio_path ] try: subprocess.run(cmd, check=True, capture_output=True) except: # 如果合并失败,使用隐写音频 mixed_audio_path = stego_audio_path # 使用ffmpeg从帧序列创建视频 frame_pattern = os.path.join(frames_dir, "frame_%06d.png") # 生成随机比特率 (5000-7000kbps) bitrate = random.randint(5000, 7000) self.status_updated.emit(f"使用比特率: {bitrate}kbps") # 使用H.264编码和指定的参数 cmd = [ 'ffmpeg', '-y', '-framerate', '30', '-i', frame_pattern, '-i', mixed_audio_path, '-c:v', 'libx264', '-pix_fmt', 'yuv420p', '-crf', '18', # 较低CRF值以获得更高质量 '-preset', 'fast' if not self.use_gpu else 'medium', '-b:v', f'{bitrate}k', '-maxrate', f'{bitrate + 1000}k', '-bufsize', f'{bitrate * 2}k', '-s', '1080x2336', '-c:a', 'aac', '-b:a', '128k', '-metadata', 'title=Processed Video', output_path ] try: subprocess.run(cmd, check=True, capture_output=True) except subprocess.CalledProcessError as e: # 如果添加音频失败,尝试创建没有音频的视频 cmd_no_audio = [ 'ffmpeg', '-y', '-framerate', '30', '-i', frame_pattern, '-c:v', 'libx264', '-pix_fmt', 'yuv420p', '-crf', '18', '-preset', 'fast' if not self.use_gpu else 'medium', '-b:v', f'{bitrate}k', '-maxrate', f'{bitrate + 1000}k', '-bufsize', f'{bitrate * 2}k', '-s', '1080x2336', '-metadata', 'title=Processed Video', output_path ] subprocess.run(cmd_no_audio, check=True, capture_output=True) # 添加声纹去重处理(简化实现) self.add_voiceprint_processing(output_path) def add_voiceprint_processing(self, video_path): """添加声纹去重处理(简化实现)""" # 在实际应用中,这里应该实现复杂的声纹处理算法 # 这里只是一个简单的示例,添加一些元数据标记 temp_output = video_path + ".temp.mp4" cmd = [ 'ffmpeg', '-i', video_path, '-metadata', 'voiceprint_processed=true', '-metadata', 'voiceprint_hash=' + ''.join(random.choices('0123456789abcdef', k=32)), '-codec', 'copy', '-y', temp_output ] try: subprocess.run(cmd, check=True, capture_output=True) # 替换原文件 os.replace(temp_output, video_path) except: # 如果添加元数据失败,保持原文件不变 if os.path.exists(temp_output): os.remove(temp_output) def add_random_metadata(self, video_path): """添加随机元数据到视频文件""" metadata_options = { 'creation_time': ['2023-01-15T10:30:00', '2023-02-20T14:45:30', '2023-03-10T09:15:45'], 'location': ['New York, USA', 'London, UK', 'Tokyo, Japan', 'Paris, France'], 'device': ['iPhone 14 Pro', 'Samsung Galaxy S23', 'Canon EOS R5', 'Sony A7IV'], 'description': ['Beautiful landscape', 'Urban exploration', 'Nature documentary', 'Travel vlog'], 'encoder': ['H.264', 'HEVC', 'AV1', 'VP9'] } # 随机选择元数据 selected_metadata = { 'creation_time': random.choice(metadata_options['creation_time']), 'location': random.choice(metadata_options['location']), 'device': random.choice(metadata_options['device']), 'description': random.choice(metadata_options['description']), 'encoder': random.choice(metadata_options['encoder']) } # 创建临时输出文件 temp_output = video_path + ".temp.mp4" # 使用ffmpeg添加元数据 cmd = [ 'ffmpeg', '-i', video_path, '-metadata', f'creation_time={selected_metadata["creation_time"]}', '-metadata', f'location={selected_metadata["location"]}', '-metadata', f'device={selected_metadata["device"]}', '-metadata', f'description={selected_metadata["description"]}', '-metadata', f'encoder={selected_metadata["encoder"]}', '-codec', 'copy', '-y', temp_output ] try: subprocess.run(cmd, check=True, capture_output=True) # 替换原文件 os.replace(temp_output, video_path) except: # 如果添加元数据失败,保持原文件不变 if os.path.exists(temp_output): os.remove(temp_output) class VideoSteganographyApp(QMainWindow): def __init__(self): super().__init__() self.video_a_path = "" self.video_b_paths = [] self.output_dir = "" self.use_gpu = False self.gpu_type = "auto" self.initUI() def initUI(self): self.setWindowTitle('视频隐写处理工具 - 最终版') self.setGeometry(100, 100, 900, 800) # 设置暗色主题样式 self.setStyleSheet(""" QMainWindow { background-color: #2b2b2b; color: #cccccc; } QGroupBox { font-weight: bold; border: 2px solid #444444; border-radius: 5px; margin-top: 1ex; padding-top: 10px; background-color: #3c3c3c; } QGroupBox::title { subcontrol-origin: margin; left: 10px; padding: 0 5px 0 5px; color: #ffffff; } QPushButton { background-color: #4CAF50; border: none; color: white; padding: 10px 20px; text-align: center; text-decoration: none; font-size: 16px; margin: 4px 2px; border-radius: 5px; } QPushButton:hover { background-color: #45a049; } QPushButton:disabled { background-color: #555555; } QPushButton:checked { background-color: #2196F3; } QLabel { padding: 5px; color: #cccccc; } QProgressBar { border: 2px solid #444444; border-radius: 5px; text-align: center; background-color: #3c3c3c; } QProgressBar::chunk { background-color: #4CAF50; width: 10px; } QCheckBox { padding: 5px; color: #cccccc; } QCheckBox::indicator { width: 15px; height: 15px; } QCheckBox::indicator:unchecked { border: 1px solid #555555; background-color: #3c3c3c; } QCheckBox::indicator:checked { border: 1px solid #555555; background-color: #4CAF50; } QListWidget { border: 1px solid #444444; border-radius: 3px; background-color: #3c3c3c; color: #cccccc; } QComboBox { border: 1px solid #444444; border-radius: 3px; padding: 5px; background-color: #3c3c3c; color: #cccccc; } QComboBox QAbstractItemView { border: 1px solid #444444; background-color: #3c3c3c; color: #cccccc; selection-background-color: #4CAF50; } QTextEdit { background-color: #3c3c3c; color: #cccccc; border: 1px solid #444444; border-radius: 3px; } """) central_widget = QWidget() self.setCentralWidget(central_widget) layout = QVBoxLayout(central_widget) # 标题 title_label = QLabel("视频隐写处理工具 - 最终版") title_label.setAlignment(Qt.AlignCenter) title_font = QFont() title_font.setPointSize(20) title_font.setBold(True) title_label.setFont(title_font) layout.addWidget(title_label) # 加速选项 acceleration_group = QGroupBox("加速选项") acceleration_layout = QHBoxLayout() self.gpu_checkbox = QCheckBox("使用GPU加速") self.gpu_checkbox.setChecked(False) self.gpu_checkbox.stateChanged.connect(self.toggle_gpu_acceleration) acceleration_layout.addWidget(self.gpu_checkbox) self.gpu_type_combo = QComboBox() self.gpu_type_combo.addItems(["自动检测", "NVIDIA CUDA", "OpenCL (Intel/AMD)"]) self.gpu_type_combo.currentIndexChanged.connect(self.change_gpu_type) acceleration_layout.addWidget(QLabel("GPU类型:")) acceleration_layout.addWidget(self.gpu_type_combo) acceleration_group.setLayout(acceleration_layout) layout.addWidget(acceleration_group) # 视频A选择区域 video_a_group = QGroupBox("视频A (主视频)") video_a_layout = QVBoxLayout() self.video_a_label = QLabel("未选择文件") video_a_layout.addWidget(self.video_a_label) video_a_btn = QPushButton("选择视频A") video_a_btn.clicked.connect(self.select_video_a) video_a_layout.addWidget(video_a_btn) video_a_group.setLayout(video_a_layout) layout.addWidget(video_a_group) # 视频B选择区域 video_b_group = QGroupBox("视频B (隐写视频 - 可多选)") video_b_layout = QVBoxLayout() self.video_b_list = QListWidget() video_b_layout.addWidget(self.video_b_list) video_b_btn_layout = QHBoxLayout() add_video_b_btn = QPushButton("添加视频B") add_video_b_btn.clicked.connect(self.add_video_b) video_b_btn_layout.addWidget(add_video_b_btn) remove_video_b_btn = QPushButton("移除选中") remove_video_b_btn.clicked.connect(self.remove_video_b) video_b_btn_layout.addWidget(remove_video_b_btn) clear_video_b_btn = QPushButton("清空列表") clear_video_b_btn.clicked.connect(self.clear_video_b) video_b_btn_layout.addWidget(clear_video_b_btn) video_b_layout.addLayout(video_b_btn_layout) video_b_group.setLayout(video_b_layout) layout.addWidget(video_b_group) # 输出选择区域 output_group = QGroupBox("输出设置") output_layout = QVBoxLayout() self.output_label = QLabel("未选择输出目录") output_layout.addWidget(self.output_label) output_btn = QPushButton("选择输出目录") output_btn.clicked.connect(self.select_output) output_layout.addWidget(output_btn) output_group.setLayout(output_layout) layout.addWidget(output_group) # 进度区域 progress_group = QGroupBox("处理进度") progress_layout = QVBoxLayout() self.batch_label = QLabel("准备就绪") progress_layout.addWidget(self.batch_label) self.status_label = QLabel("等待开始...") progress_layout.addWidget(self.status_label) self.progress_bar = QProgressBar() self.progress_bar.setValue(0) progress_layout.addWidget(self.progress_bar) progress_group.setLayout(progress_layout) layout.addWidget(progress_group) # 处理按钮 self.process_btn = QPushButton("开始批量处理") self.process_btn.clicked.connect(self.process_videos) self.process_btn.setEnabled(False) layout.addWidget(self.process_btn) # 日志区域 log_group = QGroupBox("处理日志") log_layout = QVBoxLayout() self.log_text = QTextEdit() self.log_text.setReadOnly(True) log_layout.addWidget(self.log_text) log_group.setLayout(log_layout) layout.addWidget(log_group) # 初始化日志 self.log_text.append("应用程序已启动") self.log_text.append(f"CUDA可用: {CUDA_AVAILABLE}") self.log_text.append(f"OpenCL可用: {OPENCL_AVAILABLE}") def toggle_gpu_acceleration(self, state): self.use_gpu = (state == Qt.Checked) if self.use_gpu: self.log_text.append("已启用GPU加速") else: self.log_text.append("已禁用GPU加速,使用CPU处理") def change_gpu_type(self, index): if index == 0: self.gpu_type = "auto" self.log_text.append("GPU类型: 自动检测") elif index == 1: self.gpu_type = "cuda" self.log_text.append("GPU类型: NVIDIA CUDA") elif index == 2: self.gpu_type = "opencl" self.log_text.append("GPU类型: OpenCL (Intel/AMD)") def select_video_a(self): file_path, _ = QFileDialog.getOpenFileName( self, "选择视频A文件", "", "视频文件 (*.mp4 *.avi *.mov *.mkv)" ) if file_path: self.video_a_path = file_path self.video_a_label.setText(f"已选择: {os.path.basename(file_path)}") self.log_text.append(f"已选择视频A: {file_path}") self.check_ready() def add_video_b(self): file_paths, _ = QFileDialog.getOpenFileNames( self, "选择视频B文件", "", "视频文件 (*.mp4 *.avi *.mov *.mkv)" ) if file_paths: for file_path in file_paths: if file_path not in self.video_b_paths: self.video_b_paths.append(file_path) self.video_b_list.addItem(os.path.basename(file_path)) self.log_text.append(f"已添加视频B: {file_path}") self.check_ready() def remove_video_b(self): selected_items = self.video_b_list.selectedItems() for item in selected_items: index = self.video_b_list.row(item) removed_path = self.video_b_paths.pop(index) self.video_b_list.takeItem(index) self.log_text.append(f"已移除视频B: {removed_path}") self.check_ready() def clear_video_b(self): self.video_b_paths.clear() self.video_b_list.clear() self.log_text.append("已清空视频B列表") self.check_ready() def select_output(self): dir_path = QFileDialog.getExistingDirectory( self, "选择输出目录" ) if dir_path: self.output_dir = dir_path self.output_label.setText(f"输出目录: {dir_path}") self.log_text.append(f"已选择输出目录: {dir_path}") self.check_ready() def check_ready(self): if self.video_a_path and self.video_b_paths and self.output_dir: self.process_btn.setEnabled(True) else: self.process_btn.setEnabled(False) def process_videos(self): self.process_btn.setEnabled(False) self.log_text.append("开始批量处理视频...") self.processor = VideoProcessor( self.video_a_path, self.video_b_paths, self.output_dir, self.use_gpu, self.gpu_type ) self.processor.progress_updated.connect(self.update_progress) self.processor.status_updated.connect(self.update_status) self.processor.finished.connect(self.processing_finished) self.processor.batch_progress.connect(self.update_batch_progress) self.processor.start() def update_progress(self, value): self.progress_bar.setValue(value) def update_status(self, message): self.status_label.setText(message) self.log_text.append(message) def update_batch_progress(self, current, total): self.batch_label.setText(f"处理进度: {current}/{total}") self.log_text.append(f"开始处理第 {current} 个视频,共 {total} 个") def processing_finished(self, success, message): self.process_btn.setEnabled(True) self.status_label.setText("处理完成" if success else "处理失败") self.log_text.append(message) if success: QMessageBox.information(self, "成功", message) else: QMessageBox.warning(self, "错误", message) def main(): app = QApplication(sys.argv) # 设置应用程序样式为Fusion,支持暗色主题 app.setStyle('Fusion') # 设置调色板为暗色主题 palette = QPalette() palette.setColor(QPalette.Window, QColor(43, 43, 43)) palette.setColor(QPalette.WindowText, Qt.white) palette.setColor(QPalette.Base, QColor(25, 25, 25)) palette.setColor(QPalette.AlternateBase, QColor(53, 53, 53)) palette.setColor(QPalette.ToolTipBase, Qt.white) palette.setColor(QPalette.ToolTipText, Qt.white) palette.setColor(QPalette.Text, Qt.white) palette.setColor(QPalette.Button, QColor(53, 53, 53)) palette.setColor(QPalette.ButtonText, Qt.white) palette.setColor(QPalette.BrightText, Qt.red) palette.setColor(QPalette.Link, QColor(42, 130, 218)) palette.setColor(QPalette.Highlight, QColor(42, 130, 218)) palette.setColor(QPalette.HighlightedText, Qt.black) app.setPalette(palette) window = VideoSteganographyApp() window.show() sys.exit(app.exec_()) if __name__ == '__main__': main() 再检查一下主程序代码有没有错误项和冲突项,给程序一个ico图标,将代码展示成无需命令行运行的模式,而是鼠标点击就可以运行的软件,只要Windows版本的非常详细操作。每一步怎么打包需要用到什么代码什么文件,文件怎么命名,什么软件怎么操作都详细的发给我
08-22
import sys import os import tkinter as tk from tkinter import ttk, filedialog, messagebox import cv2 import numpy as np import random from datetime import datetime, timedelta import threading import subprocess import shutil # 设置DPI感知,确保在高分辨率屏幕上显示正常 try: from ctypes import windll windll.shcore.SetProcessDpiAwareness(1) except: pass # 尝试导入可选依赖 MOVIEPY_AVAILABLE = False PSUTIL_AVAILABLE = False # 处理打包后的导入问题 if getattr(sys, 'frozen', False): # 运行在打包环境中 base_path = sys._MEIPASS # 添加可能的包路径 for package in ['moviepy', 'imageio', 'imageio_ffmpeg', 'psutil']: package_path = os.path.join(base_path, package) if os.path.exists(package_path): sys.path.insert(0, package_path) else: # 正常运行时 base_path = os.path.dirname(__file__) try: from moviepy.editor import VideoFileClip, AudioFileClip MOVIEPY_AVAILABLE = True except ImportError as e: print(f"MoviePy import error: {e}") try: import psutil PSUTIL_AVAILABLE = True except ImportError: pass # 全局变量 stop_processing = False # 定义核心处理函数 def add_invisible_overlay(frame, strength): """核心功能:添加全透明扰动层(对抗哈希检测)""" # 将强度从0-100映射到更合理的扰动范围 (1-5) overlay_strength = strength / 100.0 * 4 + 1 # 1 to 5 # 1. 创建一个和帧大小一样的随机噪声图像 noise = np.random.randn(*frame.shape).astype(np.float32) * overlay_strength # 2. 将噪声加到原帧上 new_frame = frame.astype(np.float32) + noise # 3. 确保像素值在0-255之间 new_frame = np.clip(new_frame, 0, 255).astype(np.uint8) return new_frame def resize_with_padding(frame, target_width=720, target_height=1560): """将帧调整为目标分辨率,保持宽高比,不足部分用黑色填充""" # 获取原始尺寸 h, w = frame.shape[:2] # 计算缩放比例 scale = target_width / w new_h = int(h * scale) # 如果缩放后的高度超过目标高度,则按高度缩放 if new_h > target_height: scale = target_height / h new_w = int(w * scale) resized = cv2.resize(frame, (new_w, target_height)) else: resized = cv2.resize(frame, (target_width, new_h)) # 创建目标画布(黑色) canvas = np.zeros((target_height, target_width, 3), dtype=np.uint8) # 计算放置位置(居中) y_offset = (target_height - resized.shape[0]) // 2 x_offset = (target_width - resized.shape[1]) // 2 # 将缩放后的图像放到画布上 canvas[y_offset:y_offset+resized.shape[0], x_offset:x_offset+resized.shape[1]] = resized # 在黑色区域添加不可见的随机噪声(亮度值0-5) black_areas = np.where(canvas == 0) if len(black_areas[0]) > 0: # 只对黑色区域添加噪声 noise = np.random.randint(0, 6, size=black_areas[0].shape, dtype=np.uint8) for i in range(3): # 对RGB三个通道 canvas[black_areas[0], black_areas[1], i] = noise return canvas def generate_random_metadata(): """生成随机的元数据""" # 随机设备型号列表 devices = [ "iPhone15,3", "iPhone15,2", "iPhone14,2", "iPhone14,1", "SM-G998B", "SM-G996B", "SM-G781B", "Mi 11 Ultra", "Mi 10", "Redmi Note 10 Pro" ] # 随机应用程序列表 apps = [ "Wxmm_9020230808", "Wxmm_9020230701", "Wxmm_9020230605", "LemonCamera_5.2.1", "CapCut_9.5.0", "VivaVideo_9.15.5" ] # 随机生成创建时间(最近30天内) now = datetime.now() random_days = random.randint(0, 30) random_hours = random.randint(0, 23) random_minutes = random.randint(0, 59) random_seconds = random.randint(0, 59) creation_time = now - timedelta(days=random_days, hours=random_hours, minutes=random_minutes, seconds=random_seconds) return { "device_model": random.choice(devices), "writing_application": random.choice(apps), "creation_time": creation_time.strftime("%Y-%m-%dT%H:%M:%S"), "title": f"Video_{random.randint(10000, 99999)}", "artist": "Mobile User", "compatible_brands": "isom,iso2,avc1,mp41", "major_brand": "isom" } def corrupt_metadata(input_path, output_path, custom_metadata=None, gpu_type="cpu"): """使用FFmpeg深度修改元数据""" if custom_metadata is None: custom_metadata = generate_random_metadata() # 根据GPU类型设置编码器 if gpu_type == "nvidia": video_encoder = "h264_nvenc" elif gpu_type == "amd": video_encoder = "h264_amf" elif gpu_type == "intel": video_encoder = "h264_qsv" else: video_encoder = "libx264" # 构造FFmpeg命令 command = [ 'ffmpeg', '-i', input_path, '-map_metadata', '-1', # 丢弃所有元数据 '-metadata', f'title={custom_metadata["title"]}', '-metadata', f'artist={custom_metadata["artist"]}', '-metadata', f'creation_time={custom_metadata["creation_time"]}', '-metadata', f'compatible_brands={custom_metadata["compatible_brands"]}', '-metadata', f'major_brand={custom_metadata["major_brand"]}', '-metadata', f'handler_name={custom_metadata["writing_application"]}', '-movflags', 'use_metadata_tags', '-c:v', video_encoder, '-preset', 'medium', '-crf', str(random.randint(18, 23)), # 随机CRF值 '-profile:v', 'high', '-level', '4.0', '-pix_fmt', 'yuv420p', '-c:a', 'aac', '-b:a', '96k', '-ar', '44100', '-y', output_path ] # 添加设备特定元数据 if 'iPhone' in custom_metadata["device_model"]: command.extend([ '-metadata', f'com.apple.quicktime.model={custom_metadata["device_model"]}', '-metadata', f'com.apple.quicktime.software=16.0' ]) try: subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) return True except subprocess.CalledProcessError as e: print(f"FFmpeg error: {e}") return False except FileNotFoundError: messagebox.showerror('致命错误', '错误:未找到FFmpeg!\n请确保ffmpeg.exe在程序同一目录下。') return False def create_background_video(output_path, duration, width=720, height=1560, fps=30): """创建带有扰动的黑色背景视频""" # 使用FFmpeg创建带有随机噪声的黑色背景视频 cmd = [ 'ffmpeg', '-f', 'lavfi', '-i', f'nullsrc=s={width}x{height}:d={duration}:r={fps}', '-vf', 'noise=alls=20:allf=t', '-c:v', 'libx264', '-pix_fmt', 'yuv420p', '-y', output_path ] try: subprocess.run(cmd, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) return True except subprocess.CalledProcessError as e: print(f"创建背景视频失败: {e}") return False def detect_gpu(): """检测可用的GPU类型""" try: # 尝试使用nvidia-smi检测NVIDIA GPU try: result = subprocess.run(['nvidia-smi'], capture_output=True, text=True, check=True) if result.returncode == 0: return "nvidia" except (subprocess.CalledProcessError, FileNotFoundError): pass # 尝试使用Windows Management Instrumentation检测AMD和Intel GPU try: import wmi w = wmi.WMI() for gpu in w.Win32_VideoController(): name = gpu.Name.lower() if "amd" in name or "radeon" in name: return "amd" elif "intel" in name: return "intel" except ImportError: pass # 尝试使用dxdiag检测GPU try: result = subprocess.run(['dxdiag', '/t', 'dxdiag.txt'], capture_output=True, text=True, check=True) if result.returncode == 0: with open('dxdiag.txt', 'r', encoding='utf-16') as f: content = f.read().lower() if "nvidia" in content: return "nvidia" elif "amd" in content or "radeon" in content: return "amd" elif "intel" in content: return "intel" except (subprocess.CalledProcessError, FileNotFoundError): pass except Exception as e: print(f"GPU检测失败: {e}") return "cpu" def add_audio_watermark(audio_clip, strength): """给音频添加水印(简化版本)""" # 在实际应用中,这里应该实现音频扰动算法 # 这里只是一个示例,返回原始音频 return audio_clip def process_video(): """主处理流程控制器""" global stop_processing if not MOVIEPY_AVAILABLE: messagebox.showerror("错误", "MoviePy库未安装!请运行: pip install moviepy") return False input_path = input_entry.get() output_path = output_entry.get() if not input_path or not output_path: messagebox.showerror('错误', '请先选择输入和输出文件!') return False # 解析用户选择的强度和功能 strength = strength_scale.get() use_video_perturb = video_var.get() use_audio_perturb = audio_var.get() use_metadata_corrupt = metadata_var.get() use_gan = gan_var.get() use_resize = resize_var.get() use_pip = pip_var.get() pip_opacity = pip_opacity_scale.get() if use_pip else 2 num_pip_videos = int(pip_num_combo.get()) if use_pip else 0 gpu_type = gpu_combo.get() # 临时文件路径 temp_video_path = "temp_processed.mp4" temp_audio_path = "temp_audio.aac" pip_temp_path = "temp_pip.mp4" if use_pip else None background_path = "temp_background.mp4" final_output_path = output_path # 获取原始视频时长和帧率 try: original_clip = VideoFileClip(input_path) original_duration = original_clip.duration original_fps = original_clip.fps original_clip.close() except Exception as e: messagebox.showerror('错误', f'无法打开视频文件: {str(e)}') return False try: # 第一步:创建背景视频 if use_resize: if not create_background_video(background_path, original_duration, 720, 1560, original_fps): messagebox.showerror('错误', '创建背景视频失败!') return False # 第二步:处理视频和音频 if use_video_perturb or use_resize: # 使用OpenCV打开视频 cap = cv2.VideoCapture(input_path) # 获取视频属性 fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 设置目标分辨率 target_width, target_height = 720, 1560 # 创建VideoWriter来写入处理后的视频 fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(temp_video_path, fourcc, fps, (target_width, target_height)) processed_frames = 0 # 主循环:逐帧处理 while True: ret, frame = cap.read() if not ret: break # 读到结尾就退出 # 如果勾选了"调整分辨率",先调整分辨率 if use_resize: frame = resize_with_padding(frame, target_width, target_height) # 如果勾选了"视频扰动",就对当前帧进行处理 if use_video_perturb: frame = add_invisible_overlay(frame, strength) # 写入处理后的帧 out.write(frame) processed_frames += 1 # 更新进度条 progress_var.set(processed_frames / total_frames * 100) root.update_idletasks() # 检查是否取消 if stop_processing: break # 释放资源 cap.release() out.release() if stop_processing: messagebox.showinfo('信息', '处理已取消!') return False # 第三步:处理音频 if use_audio_perturb: # 从原视频提取音频 original_video = VideoFileClip(input_path) original_audio = original_video.audio if original_audio is not None: # 给音频添加水印 processed_audio = add_audio_watermark(original_audio, strength) # 保存处理后的音频到临时文件 processed_audio.write_audiofile(temp_audio_path, logger=None) processed_audio.close() original_video.close() else: # 如果没有勾选音频处理,直接提取原音频 original_video = VideoFileClip(input_path) original_audio = original_video.audio if original_audio is not None: original_audio.write_audiofile(temp_audio_path, logger=None) original_video.close() # 第四步:合并视频和音频 # 如果处理了视频或调整了分辨率,使用处理后的视频,否则使用原视频 video_source = temp_video_path if (use_video_perturb or use_resize) else input_path # 如果有音频文件,合并音频 if os.path.exists(temp_audio_path): # 使用FFmpeg合并音视频 merge_cmd = [ 'ffmpeg', '-i', video_source, '-i', temp_audio_path, '-c:v', 'copy', '-c:a', 'aac', '-map', '0:v:0', '-map', '1:a:0', '-shortest', '-y', final_output_path ] subprocess.run(merge_cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) else: # 如果没有音频,直接复制视频 shutil.copy2(video_source, final_output_path) # 第五步:处理元数据(无论是否处理视频音频,只要勾选了就执行) if use_metadata_corrupt: custom_meta = generate_random_metadata() temp_final_path = final_output_path + "_temp.mp4" success = corrupt_metadata(final_output_path, temp_final_path, custom_meta, gpu_type) if success: # 用处理完元数据的文件替换最终文件 if os.path.exists(final_output_path): os.remove(final_output_path) os.rename(temp_final_path, final_output_path) else: return False # 第六步:GAN处理(预留功能) if use_gan: messagebox.showinfo('信息', 'GAN功能是预留选项,在当前版本中未实际生效。') messagebox.showinfo('完成', f'处理完成!\n输出文件已保存至: {final_output_path}') return True except Exception as e: messagebox.showerror('错误', f'处理过程中出现错误: {str(e)}') return False finally: # 清理可能的临时文件 for temp_file in [temp_video_path, temp_audio_path, pip_temp_path, background_path]: if temp_file and os.path.exists(temp_file): try: os.remove(temp_file) except: pass # 重置进度条 progress_var.set(0) # 启用开始按钮 start_button.config(state=tk.NORMAL) stop_processing = False def start_processing(): """开始处理视频""" global stop_processing stop_processing = False start_button.config(state=tk.DISABLED) # 在新线程中处理视频 thread = threading.Thread(target=process_video, daemon=True) thread.start() def stop_processing_func(): """停止处理""" global stop_processing stop_processing = True def browse_input(): """浏览输入文件""" filename = filedialog.askopenfilename( filetypes=[("Video Files", "*.mp4 *.mov *.avi *.mkv"), ("All Files", "*.*")] ) if filename: input_entry.delete(0, tk.END) input_entry.insert(0, filename) def browse_output(): """浏览输出文件""" filename = filedialog.asksaveasfilename( defaultextension=".mp4", filetypes=[("MP4 Files", "*.mp4"), ("All Files", "*.*")] ) if filename: output_entry.delete(0, tk.END) output_entry.insert(0, filename) def toggle_pip_widgets(): """切换画中画相关控件的状态""" state = tk.NORMAL if pip_var.get() else tk.DISABLED pip_num_combo.config(state=state) pip_opacity_scale.config(state=state) def show_gan_info(): """显示GAN功能信息""" if gan_var.get(): messagebox.showinfo('功能说明', '请注意:GAN功能是高级预留功能。\n在当前版本中,它会被一个高级扰动算法模拟,但并非真正的GAN。\n效果依然强大。') # 检测可用GPU detected_gpu = detect_gpu() gpu_options = ["自动检测", "cpu", "nvidia", "amd", "intel"] default_gpu = detected_gpu if detected_gpu != "cpu" else "自动检测" # 创建主窗口 root = tk.Tk() root.title("视频号专版防检测处理工具 v3.0") root.geometry("800x600") # 创建变量 video_var = tk.BooleanVar(value=True) audio_var = tk.BooleanVar(value=True) resize_var = tk.BooleanVar(value=True) metadata_var = tk.BooleanVar(value=True) pip_var = tk.BooleanVar(value=False) gan_var = tk.BooleanVar(value=False) progress_var = tk.DoubleVar(value=0) # 创建界面组件 main_frame = ttk.Frame(root, padding="10") main_frame.grid(row=0, column=0, sticky=(tk.W, tk.E, tk.N, tk.S)) # 输入文件选择 ttk.Label(main_frame, text="输入视频文件:").grid(row=0, column=0, sticky=tk.W, pady=5) input_entry = ttk.Entry(main_frame, width=50) input_entry.grid(row=0, column=1, padx=5, pady=5) ttk.Button(main_frame, text="浏览", command=browse_input).grid(row=0, column=2, padx=5, pady=5) # 输出文件选择 ttk.Label(main_frame, text="输出视频文件:").grid(row=1, column=0, sticky=tk.W, pady=5) output_entry = ttk.Entry(main_frame, width=50) output_entry.grid(row=1, column=1, padx=5, pady=5) ttk.Button(main_frame, text="浏览", command=browse_output).grid(row=1, column=2, padx=5, pady=5) # 分隔线 ttk.Separator(main_frame, orient=tk.HORIZONTAL).grid(row=2, column=0, columnspan=3, sticky=(tk.W, tk.E), pady=10) # 处理强度 ttk.Label(main_frame, text="处理强度:").grid(row=3, column=0, sticky=tk.W, pady=5) strength_scale = tk.Scale(main_frame, from_=1, to=100, orient=tk.HORIZONTAL, length=400) strength_scale.set(50) strength_scale.grid(row=3, column=1, columnspan=2, sticky=(tk.W, tk.E), padx=5, pady=5) # 分隔线 ttk.Separator(main_frame, orient=tk.HORIZONTAL).grid(row=4, column=0, columnspan=3, sticky=(tk.W, tk.E), pady=10) # 处理选项 ttk.Checkbutton(main_frame, text="时空域微扰动 (抗视频指纹 - 核心推荐)", variable=video_var).grid(row=5, column=0, columnspan=3, sticky=tk.W, pady=2) ttk.Checkbutton(main_frame, text="音频指纹污染 (抗音频指纹 - 核心推荐)", variable=audio_var).grid(row=6, column=0, columnspan=3, sticky=tk.W, pady=2) ttk.Checkbutton(main_frame, text="标准化分辨率 (720x1560) + 黑边扰动", variable=resize_var).grid(row=7, column=0, columnspan=3, sticky=tk.W, pady=2) ttk.Checkbutton(main_frame, text="元数据彻底清理与伪造", variable=metadata_var).grid(row=8, column=0, columnspan=3, sticky=tk.W, pady=2) # 画中画选项 pip_frame = ttk.Frame(main_frame) pip_frame.grid(row=9, column=0, columnspan=3, sticky=tk.W, pady=2) ttk.Checkbutton(pip_frame, text="画中画干扰 (从P文件夹随机选择视频)", variable=pip_var, command=toggle_pip_widgets).grid(row=0, column=0, sticky=tk.W) pip_options_frame = ttk.Frame(main_frame) pip_options_frame.grid(row=10, column=0, columnspan=3, sticky=tk.W, pady=2) ttk.Label(pip_options_frame, text="画中画数量:").grid(row=0, column=0, sticky=tk.W, padx=5) pip_num_combo = ttk.Combobox(pip_options_frame, values=[1, 2, 3, 4, 5], state="readonly", width=5) pip_num_combo.set(3) pip_num_combo.grid(row=0, column=1, padx=5) ttk.Label(pip_options_frame, text="透明度 (1-100):").grid(row=0, column=2, sticky=tk.W, padx=5) pip_opacity_scale = tk.Scale(pip_options_frame, from_=1, to=100, orient=tk.HORIZONTAL, length=150) pip_opacity_scale.set(2) pip_opacity_scale.grid(row=0, column=3, padx=5) # 禁用画中画选项 pip_num_combo.config(state=tk.DISABLED) pip_opacity_scale.config(state=tk.DISABLED) # GAN选项 ttk.Checkbutton(main_frame, text="动态GAN对抗性扰动 (预留功能)", variable=gan_var, command=show_gan_info).grid(row=11, column=0, columnspan=3, sticky=tk.W, pady=2) # GPU加速选项 gpu_frame = ttk.Frame(main_frame) gpu_frame.grid(row=12, column=0, columnspan=3, sticky=tk.W, pady=5) ttk.Label(gpu_frame, text="GPU加速:").grid(row=0, column=0, sticky=tk.W) gpu_combo = ttk.Combobox(gpu_frame, values=gpu_options, state="readonly", width=10) gpu_combo.set(default_gpu) gpu_combo.grid(row=0, column=1, padx=5) # 分隔线 ttk.Separator(main_frame, orient=tk.HORIZONTAL).grid(row=13, column=0, columnspan=3, sticky=(tk.W, tk.E), pady=10) # 进度条 ttk.Label(main_frame, text="进度:").grid(row=14, column=0, sticky=tk.W, pady=5) progress_bar = ttk.Progressbar(main_frame, variable=progress_var, maximum=100, length=400) progress_bar.grid(row=14, column=1, columnspan=2, sticky=(tk.W, tk.E), padx=5, pady=5) # 按钮 button_frame = ttk.Frame(main_frame) button_frame.grid(row=15, column=0, columnspan=3, pady=10) start_button = ttk.Button(button_frame, text="开始处理", command=start_processing) start_button.pack(side=tk.LEFT, padx=5) ttk.Button(button_frame, text="停止", command=stop_processing_func).pack(side=tk.LEFT, padx=5) ttk.Button(button_frame, text="退出", command=root.quit).pack(side=tk.LEFT, padx=5) # 配置网格权重 root.columnconfigure(0, weight=1) root.rowconfigure(0, weight=1) main_frame.columnconfigure(1, weight=1) # 运行主循环 root.mainloop() 以上代码在打包时出现问题,请使用Tkinter替代PySimpleGUI代码,通过指定路径解决 MoviePy 导入问题,C:\Users\Administrator\AppData\Local\Programs\Python\Python312\Lib\site-packages\moviepy_init_.py 这是moviepy路径,给我一个完整的打包操作方案,详细列出所需的所有操作
08-21
内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔和过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及和柔和、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能和、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识和梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅读和梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件和MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑与互锁机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解。
IDL> .compile -v 'D:\Harris\IDLwork\Default\binary.pro' if bands eq 1 then ^ % Syntax error. At: D:\Harris\IDLwork\Default\binary.pro, Line 32 else ^ % Syntax error. At: D:\Harris\IDLwork\Default\binary.pro, Line 35 endif ^ % Type of end does not match statement (END expected). At: D:\Harris\IDLwork\Default\binary.pro, Line 40 % 3 Compilation error(s) in module READ_ENVI_BINARY. return, data ^ % Return statement in procedures can't have values. At: D:\Harris\IDLwork\Default\binary.pro, Line 45 % 1 Compilation error(s) in module $MAIN$. pro write_envi_binary, filename, data, hdr_filename=hdr_filename ^ % Procedure header must appear first and only once: WRITE_ENVI_BINARY At: D:\Harris\IDLwork\Default\binary.pro, Line 49 if ndims eq 2 then ^ % Syntax error. At: D:\Harris\IDLwork\Default\binary.pro, Line 60 else ^ % Syntax error. At: D:\Harris\IDLwork\Default\binary.pro, Line 62 endif ^ % Type of end does not match statement (END expected). At: D:\Harris\IDLwork\Default\binary.pro, Line 64 % 4 Compilation error(s) in module $MAIN$. if bands eq 1 then ^ % Syntax error. At: D:\Harris\IDLwork\Default\binary.pro, Line 81 else ^ % Syntax error. At: D:\Harris\IDLwork\Default\binary.pro, Line 84 endif ^ % Type of end does not match statement (END expected). At: D:\Harris\IDLwork\Default\binary.pro, Line 89 % 3 Compilation error(s) in module $MAIN$. % Compiled module: $MAIN$. data_type=data_type, interleave=interleave ^ % Procedure header must appear first and only once: WRITE_ENVI_HEADER At: D:\Harris\IDLwork\Default\binary.pro, Line 104 % 1 Compilation error(s) in module $MAIN$. pro pan_example ^ % Procedure header must appear first and only once: PAN_EXAMPLE At: D:\Harris\IDLwork\Default\binary.pro, Line 147 % 1 Compilation error(s) in module $MAIN$. pro ms_example ^ % Procedure header must appear first and only once: MS_EXAMPLE At: D:\Harris\IDLwork\Default\binary.pro, Line 167 % 1 Compilation error(s) in module $MAIN$. pro envi_binary_demo ^ % Procedure header must appear first and only once: ENVI_BINARY_DEMO At: D:\Harris\IDLwork\Default\binary.pro, Line 198 % 1 Compilation error(s) in module $MAIN$.
06-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值