Hadoop集群,报java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1

本文针对Hadoop集群中出现的java.lang.RuntimeException错误进行分析,并提供了解决方案,包括检查配置文件、确认MapReduce脚本的正确性和验证运行环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

跑任务先生,在Hadoop的集群,报

错误:了java.lang.RuntimeException:PipeMapRed.waitOutputThreads():子与代码1未能
        在org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:322)
        在org.apache.hadoop.streaming.PipeMapRed.mapRedFinished (PipeMapRed.java:535)
        位于org.apache的org.apache.hadoop.streamed.PipeMapper.close(PipeMapper.java:130)
        org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:61)
        。 hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:34)
        在org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:450)
        在org.apache.hadoop.mapred.MapTask.run(MapTask.java: 343)
        at org.apache.hadoop.mapred.YarnChild $ 2.run(YarnChild.java:163)
        在java.security.AccessController.doPrivileged(Native Method)
        的javax.security.auth.Subject.doAs(Subject.java:422)
        atg.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1656)
        at org .apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)


18/07/04 23:40:09 INFO mapreduce.Job:任务ID:attempt_1530511428429_0038_m_000001_0,状态:FAILED
错误:java.lang.RuntimeException:PipeMapRed。 waitOutputThreads():子进程失败,代码为1
        ,org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:322)
        位于org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:535)
        org。 apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:130)
        org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:61)
        org.apache.hadoop.stream.PipeMapRunner.run(PipeMapRunner.java:34)
        org.apache.hadoop.mapred.MapTask.runOldMapper (MapTask.java:450)
        在org.apache.hadoop.mapred.MapTask.run(MapTask.java:343)
        在org.apache.hadoop.mapred.YarnChild $ 2.run(YarnChild.java:163)
        在java.security .AccessController.doPrivileged(本机方法)
        在javax.security.auth.Subject.doAs(Subject.java:422)
        在org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1656)

        在org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)


对于该类错误,解决办法,1 、先看看配置文件有没有错误,例如:relication


2,检查自己的map.py有没有问题,必须把代码写正确,如果不正确,也会报该类错误

3,看看自己的环境有没有问题

486_0003 running in uber mode : false 2025-06-11 18:48:39,482 INFO mapreduce.Job: map 0% reduce 0% 2025-06-11 18:48:45,635 INFO mapreduce.Job: Task Id : attempt_1744881937486_0003_m_000000_0, Status : FAILED Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1 at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:325) at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:538) at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:130) at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:61) at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:34) at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:465) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:349) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:174) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1729) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:168) 2025-06-11 18:48:46,677 INFO mapreduce.Job: map 50% reduce 0% 2025-06-11 18:48:50,727 INFO mapreduce.Job: Task Id : attempt_1744881937486_0003_m_000000_1, Status : FAILED Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1 at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:325) at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:538) at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:130) at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:61) at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:34) at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:465) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:349) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:174) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1729) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:168) 2025-06-11 18:48:52,758 INFO mapreduce.Job: Task Id : attempt_1744881937486_0003_r_000000_0, Status : FAILED [2025-06-11 18:48:51.419]Container [pid=71601,containerID=container_1744881937486_0003_01_000005] is running 537561600B beyond the 'VIRTUAL' memory limit. Current usage: 166.6 MB of 1 GB physical memory used; 2.6 GB of 2.1 GB virtual memory used. Killing container. Dump of the process-tree for container_1744881937486_0003_01_000005 : |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE |- 71601 71599 71601 71601 (bash) 0 1 116002816 303 /bin/bash -c /usr/local/jdk1.8.0_391/bin/java -Djava.net.preferIPv4Stack=true -Dhadoop.metrics.log.level=WARN -Xmx820m -Djava.io.tmpdir=/tmp/hadoop-root/nm-local-dir/usercache/root/appcache/application_1744881937486_0003/container_1744881937486_0003_01_000005/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/root/software/hadoop-3.1.3/logs/userlogs/application_1744881937486_0003/container_1744881937486_0003_01_000005 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dyarn.app.mapreduce.shuffle.logger=INFO,shuffleCLA -Dyarn.app.mapreduce.shuffle.logfile=syslog.shuffle -Dyarn.app.mapreduce.shuffle.log.filesize=0 -Dyarn.app.mapreduce.shuffle.log.backups=0 org.apache.hadoop.mapred.YarnChild 192.168.30.110 37705 attempt_1744881937486_0003_r_000000_0 5 1>/root/software/hadoop-3.1.3/logs/userlogs/application_1744881937486_0003/container_1744881937486_0003_01_000005/stdout 2>/root/software/hadoop-3.1.3/logs/userlogs/application_1744881937486_0003/container_1744881937486_0003_01_000005/stderr |- 71616 71601 71601 71601 (java) 453 87 2676416512 42355 /usr/local/jdk1.8.0_391/bin/java -Djava.net.preferIPv4Stack=true -Dhadoop.metrics.log.level=WARN -Xmx820m -Djava.io.tmpdir=/tmp/hadoop-root/nm-local-dir/usercache/root/appcache/application_1744881937486_0003/container_1744881937486_0003_01_000005/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/root/software/hadoop-3.1.3/logs/userlogs/application_1744881937486_0003/container_1744881937486_0003_01_000005 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dyarn.app.mapreduce.shuffle.logger=INFO,shuffleCLA -Dyarn.app.mapreduce.shuffle.logfile=syslog.shuffle -Dyarn.app.mapreduce.shuffle.log.filesize=0 -Dyarn.app.mapreduce.shuffle.log.backups=0 org.apache.hadoop.mapred.YarnChild 192.168.30.110 37705 attempt_1744881937486_0003_r_000000_0 5 [2025-06-11 18:48:51.462]Container killed on request. Exit code is 143 [2025-06-11 18:48:51.478]Container exited with a non-zero exit code 143. 2025-06-11 18:48:54,802 INFO mapreduce.Job: Task Id : attempt_1744881937486_0003_m_000000_2, Status : FAILED Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1 at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:325) at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:538) at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:130) at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:61) at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:34) at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:465) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:349) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:174) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1729) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:168) 2025-06-11 18:49:00,976 INFO mapreduce.Job: map 100% reduce 100% 2025-06-11 18:49:01,992 INFO mapreduce.Job: Job job_1744881937486_0003 failed with state FAILED due to: Task failed task_1744881937486_0003_m_000000 Job failed as tasks failed. failedMaps:1 failedReduces:0 killedMaps:0 killedReduces: 0 2025-06-11 18:49:02,105 INFO mapreduce.Job: Counters: 42 File System Counters FILE: Number of bytes read=0 FILE: Number of bytes written=352125 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=1771275 HDFS: Number of bytes written=0 HDFS: Number of read operations=3 HDFS: Number of large read operations=0 HDFS: Number of write operations=0 Job Counters Failed map tasks=4 Failed reduce tasks=1 Killed reduce tasks=1 Launched map tasks=5 Launched reduce tasks=2 Other local map tasks=3 Data-local map tasks=2 Total time spent by all maps in occupied slots (ms)=18987 Total time spent by all reduces in occupied slots (ms)=8718 Total time spent by all map tasks (ms)=18987 Total time spent by all reduce tasks (ms)=8718 Total vcore-milliseconds taken by all map tasks=18987 Total vcore-milliseconds taken by all reduce tasks=8718 Total megabyte-milliseconds taken by all map tasks=19442688 Total megabyte-milliseconds taken by all reduce tasks=8927232 Map-Reduce Framework Map input records=10009 Map output records=10009 Map output bytes=110099 Map output materialized bytes=130123 Input split bytes=92 Combine input records=0 Spilled Records=10009 Failed Shuffles=0 Merged Map outputs=0 GC time elapsed (ms)=121 CPU time spent (ms)=1250 Physical memory (bytes) snapshot=268398592 Virtual memory (bytes) snapshot=2787106816 Total committed heap usage (bytes)=249036800 Peak Map Physical memory (bytes)=268398592 Peak Map Virtual memory (bytes)=2787106816 File Input Format Counters Bytes Read=1771183 2025-06-11 18:49:02,105 ERROR streaming.StreamJob: Job not successful! Streaming Command Failed! [root@master ~]#
最新发布
06-12
<think>嗯,用户遇到了一个相当典型的HadoopStreaming错误:"PipeMapRed.waitOutputThreads():subprocessfailedwithcode1"伴随虚拟内存限制问题。这个问题在运维Hadoop集群时很常见,但需要多角度排查。用户提供的引用信息很有价值。引用[3]提到了两个关键点:脚本本身的缺陷和缺少依赖文件,这正是大多数code1错误的根源。而引用[4]的127错误通常说明系统找不到解释器,暗示环境问题。虚拟内存超限则需要调整资源配置。用户可能是个数据工程师或Hadoop运维人员,正在紧急处理生产环境故障。ta的语气透露出焦急("就tm一直错"这种表述),需要快速可行的解决方案。考虑到集群环境的复杂性,应该给出梯度化的排查步骤:先解决迫切的代码错误,再处理资源问题。注意到用户展示了具体的streaming命令,其中映射器/归约器使用Python编写。这提示三点排查方向:Python环境兼容性(比如系统python2/python3混乱)、脚本本身能否独立运行、以及关键的权限问题(执行位是否开启)。对于虚拟机限制,需要区分两种情况:如果是开发测试环境,可以放宽限制;如果是生产环境,则需要真正优化资源使用。用户可能没意识到,Hadoop默认会保留一部分虚拟内存作为缓冲,实际需求比错提示的值低10-15%。特别要注意引用[3]中提到的隐藏陷阱:即使Python脚本能单独运行,在集群环境下可能因为缺少依赖文件崩溃。这要求用户必须用"-file"显式声明所有依赖,包括配置文件、数据字典等。想到一个经典案例:某项目因为忘记打包30KB的邮编对照表导致整个作业失败。最后建议的解决方案按优先级排序:先确认脚本可执行权限(最易修复),再验证脚本健壮性(通过本地管道测试),最后调整内存参数。如果用户后续反馈某个步骤卡住,可能需要深入查看stderr日志——不过用户没提供日志路径提示,暂时不必展开。</think> 以下针对Hadoop MapReduce任务中出现的 `PipeMapRed.waitOutputThreads(): subprocess failed with code 1` 错误及虚拟内存超限问题,结合引用资料提供系统性解决方案: --- ### **一、错误原因分析** 1. **`code 1` 错误根源** - 映射器/归约器脚本(Python等)自身存在运行时错误(引用[3]) - 缺少依赖文件(配置文件、数据文件等未通过 `-file` 提交)(引用[3][4]) - 脚本执行权限缺失(`Permission Denied`) 2. **`code 127` 错误说明** - 系统未找到解释器(如未在脚本头声明 `#!/usr/bin/env python3`) - 依赖环境变量未正确配置(引用[4]) 3. **虚拟内存超限** - JVM堆内存或容器内存分配不足(常见于大数据量任务) - YARN内存参数配置不合理 --- ### **二、分步解决方案** #### ▶ **1. 修复脚本级问题(解决`code 1`)** - **脚本本地验证** 在提交前执行测试(引用[2][3]): ```bash cat input.txt | python mapper.py | sort | python reducer.py > output.txt ``` 确保输出无错后再提交集群。 - **显式声明依赖文件** 在Streaming命令中添加所有依赖: ```bash hadoop jar hadoop-streaming.jar \ -input /input \ -output /output \ -mapper "mapper.py" \ -reducer "reducer.py" \ -file mapper.py \ -file reducer.py \ -file config.ini # 添加配置文件(引用[3]) ``` - **添加执行权限** 在脚本头部添加权限声明并确保可执行: ```bash # mapper.py首行声明 #!/usr/bin/env python3 chmod +x mapper.py reducer.py # 赋予执行权限 ``` #### ▶ **2. 配置YARN内存参数(解决虚拟内存超限)** 在提交命令中增加内存限制调整参数(引用[4]): ```bash -D mapreduce.map.memory.mb=2048 \ # 容器内存上限(MB) -D mapreduce.map.java.opts=-Xmx1536m \ # JVM堆内存(建议设为容器的70-80%) -D yarn.nodemanager.vmem-check-enabled=false \ # 临时关闭虚拟内存检查(生产环境慎用) ``` > **参数调优建议**: > - 当虚拟内存超限时,优先尝试增大 `mapreduce.map.memory.mb` > - 若仍不足,按比例调整 `mapreduce.map.java.opts`(不超过容器内存的80%) > - 测试环境可临时关闭虚拟内存检查(`vmem-check-enabled=false`),但生产环境应实际优化资源使用 #### ▶ **3. 关键环境检查** - **解释器路径确认** 脚本首行声明明确解释器(避免`code 127`): ```python #!/usr/bin/env python3 # 根据实际环境选择python/python3 ``` - **日志分析定位问题** 在集群上查看失败任务的stderr日志: ```bash yarn logs -applicationId <Your_Application_ID> | grep -A 20 "Caused by" ``` 重点检查Python脚本抛出的具体错误(如导入模块失败、文件不存在等) --- ### **三、典型场景解决方案** | **场景** | **解决方案** | |--------------------------|-----------------------------------------------------------------------------| | 脚本本地正常,集群失败 | 检查环境变量差异,确保依赖模块已在集群所有节点安装 | | 缺少配置文件 | 通过 `-file config.ini` 显式提交 | | 任务频繁OOM(内存溢出) | 增加内存参数并优化代码(如减少中间变量数量、分批读取数据) | | Python第三方模块缺失 | 使用`venv`打包虚拟环境,或集群全局安装所需模块 | > **重要提示**:若需调用外部程序(如C++二进制文件),需确保其在所有计算节点兼容且具有可执行权限(引用[3][4]) --- ### **相关优化问题** 1. 如何对Hadoop Streaming任务进行性能调优? 2. Hadoop YARN内存管理机制是怎样的?如何避免资源分配冲突? 3. Python脚本在Hadoop集群运行时,依赖库的管理最佳实践是什么? > 参考资料: > [^1]: Hadoop Streaming提交命令及code 127错误示例 > [^2]: MapReduce本地调试与集群差异分析 > [^3]: UDF脚本依赖文件缺失导致code 1错误 > [^4]: YARN内存参数配置与解释器路径声明 > [^5]: RHadoop环境下的类似错误处理经验
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值