#include <iostream>
using namespace std;
int fibonacci(int n) {
if (n == 0 || n == 1) {
return n;
}
return fibonacci(n-1) + fibonacci(n-2);
}
int main() {
int n = 10;
cout << "斐波那契数列的第" << n << "项为:" << fibonacci(n) << endl;
return 0;
}
#include <iostream>
#include <vector>
using namespace std;
// 使用vector实现动态规划版本的斐波那契数列
int fibonacci(int n) {
if (n <= 1) {
return n;
}
vector<int> dp(n + 1, 0);
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
int main() {
int n = 10;
cout << "第 " << n << " 个斐波那契数列的值为:" << fibonacci(n) << endl;
return 0;
}
def fib(n):
#递归解法求解斐波那契数列,但是效率较低,存在重复计算
if n <= 1:
return n
return fib(n-1) + fib(n-2)
def fib_dp(n):
#动态规划求解斐波那契数列,没有重复计算,结果保存数组,效率提升
if n <= 1:
return n
f = [0] * (n+1)
f[0], f[1] = 0, 1
for i in range(2, n+1):
f[i] = f[i-1] + f[i-2]
return f[n]