Day 18 C. Coin Rows

这是一个关于 Alice 和 Bob 在二维矩阵中进行博弈的问题,目标是通过最优策略决定路径,使得 Bob 收集到的硬币数量最少。Alice 先行,Bob 后行,每步只能向右或向下移动。Alice 想要最小化 Bob 的得分,而 Bob 则希望最大化得分。输入包括矩阵的列数和每行的硬币数量,输出是双方最优策略下 Bob 的得分。示例给出了三种情况的解答。算法需要找到每行的前缀和与后缀和的最大值的最小值,以此作为 Bob 的得分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem:
Alice and Bob are playing a game on a matrix, consisting of 2 rows and m columns. The cell in the i-th row in the j-th column contains ai,j coins in it.

Initially, both Alice and Bob are standing in a cell (1,1). They are going to perform a sequence of moves to reach a cell (2,m).

The possible moves are:

Move right — from some cell (x,y) to (x,y+1);
Move down — from some cell (x,y) to (x+1,y).
First, Alice makes all her moves until she reaches (2,m). She collects the coins in all cells she visit (including the starting cell).

When Alice finishes, Bob starts his journey. He also performs the moves to reach (2,m) and collects the coins in all cells that he visited, but Alice didn’t.

The score of the game is the total number of coins Bob collects.

Alice wants to minimize the score. Bob wants to maximize the score. What will the score of the game be if both players play optimally?

Input
The first line contains a single integer t (1≤t≤10^4) — the number of testcases.

Then the descriptions of t testcases follow.

The first line of the testcase contains a single integer m (1≤m≤10^5) — the number of columns of the matrix.

The i-th of the next 2 lines contain m integers a(i,1),a(i,2),…,a(i,m) (1≤a(i,j)≤10^4) — the number of coins in the cell in the i-th row in the j-th column of the matrix.

The sum of m over all testcases doesn’t exceed 10^5.

Output
For each testcase print a single integer — the score of the game if both players play optimally.

Example
input
3

3
1 3 7
3 5 1

3
1 3 9
3 5 1

1
4
7
output
7
8
0

Note
The paths for the testcases are shown on the following pictures. Alice’s path is depicted in red and Bob’s path is depicted in blue.

在这里插入图片描述
这题的大致意思为:Alice想要让Bob得到的分数最少 而Bob想得到在Alice干扰下的最高分数 而且规定两人前进的道路只能向下或者向右 并且游戏棋盘最大为2*m 所以只需要考虑下面一行的前缀和与上面一行的后缀和两者相比中的最大值的最小值

#include <iostream>
#include <vector>
#define ll long long
using namespace std;
int main()
{
    int t;
    cin >> t;
    while (t--) 
    {
        int m;
        cin >> m;
        vector<int> a(m);
        for (int i = 0; i < m; i++) 
        {
            cin >> a[i];
        }
        vector<int> b(m);
        for (int i = 0; i < m; i++)
        {
            cin >> b[i];
        }
        vector<int> pref(m + 1);
        for (int i = 0; i < m; i++) 
        {
            pref[i + 1] = pref[i] + b[i];
        }
        vector<int> suf(m + 1);
        for (int i = m - 1; i >= 0; i--) 
        {
            suf[i] = suf[i + 1] + a[i];
        }
        int ans = (int)1e9;
        for (int i = 0; i < m; i++)
        {
            ans = min(ans, max(pref[i], suf[i + 1]));
        }
        cout << ans << endl;;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值