背景
承接《yolo v10 推理速度测试报告》,调研完推理速度后,我将报告、模型和代码交接给工程实施同事,让他们采用TensorRT方式部署。
结果实测反馈,接口响应时间为50ms,远大于报告中给出的20ms实测值。需要注意的是,报告中20ms为纯模型推理耗时,而工程部署的50ms包含完整业务链路(如数据读取、预处理、后处理等),两者指标范围不同,这也提示我们需关注推理外的性能瓶颈。
更关键的是,同事尝试通过减少日志打印优化接口速度——但性能优化的首要原则是“基于测量的针对性优化”,日志打印对接口耗时的影响通常在微秒级,盲目优化非核心路径只会浪费精力,显然不符合“先测量、再优化”的基本方案。
测量
所有的优化行为都应该基于准确的测量。为了细致分析整个业务链路的耗时分布,我的第一个想法是实现一个类似 Java 中 Google Guava Stopwatch 的轻量 Python 计时类,但实际使用时发现,部分函数逻辑嵌套较深,若要对每个关键节点做细致测量,需在代码中大量埋点,耗时且侵入性强。
于是我想起之前整理的《如何分析python程序cpu占用率问题》中提到的py-spy工具,它支持非侵入式生成函数火焰图,无需修改业务代码,命令如下:
py-spy record -o profile.svg -d 60 -p <pid>
实际使用过程中,遇到两个小问题:

最低0.47元/天 解锁文章





