Play on Words(HDU-1116)

本文介绍了一种通过编程解决秘密门上的单词拼接谜题的方法,利用图论中的欧拉路径原理,实现了寻找可能的单词序列以开启密门的算法。文章详细解释了如何通过计算每个字母的入度和出度来判断是否存在有效的单词序列,并给出了完整的C++代码实现。
Problem Description
Some of the secret doors contain a very interesting word puzzle. The team of archaeologists has to solve it to open that doors. Because there is no other way to open the doors, the puzzle is very important for us. 

There is a large number of magnetic plates on every door. Every plate has one word written on it. The plates must be arranged into a sequence in such a way that every word begins with the same letter as the previous word ends. For example, the word ``acm'' can be followed by the word ``motorola''. Your task is to write a computer program that will read the list of words and determine whether it is possible to arrange all of the plates in a sequence (according to the given rule) and consequently to open the door. 
 

Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer number Nthat indicates the number of plates (1 <= N <= 100000). Then exactly Nlines follow, each containing a single word. Each word contains at least two and at most 1000 lowercase characters, that means only letters 'a' through 'z' will appear in the word. The same word may appear several times in the list. 
 

Output
Your program has to determine whether it is possible to arrange all the plates in a sequence such that the first letter of each word is equal to the last letter of the previous word. All the plates from the list must be used, each exactly once. The words mentioned several times must be used that number of times. 
If there exists such an ordering of plates, your program should print the sentence "Ordering is possible.". Otherwise, output the sentence "The door cannot be opened.". 
 

Sample Input
3 2 acm ibm 3 acm malform mouse 2 ok ok
 

Sample Output
The door cannot be opened. Ordering is possible. The door cannot be opened.
 

思路:判断是否有欧拉回路或欧拉道路;

    代码如下:

#include<bits/stdc++.h>
using namespace std;
struct pp
{
    int l,r;//计算每个字母的入度和出度;
};
pp z[26];
int pa[26];
int root(int x)
{
    return pa[x]==x?x:pa[x]=root(pa[x]);
}
void mer(int x,int y)
{
    int rx=root(x),ry=root(y);
    if(rx!=ry)
        pa[rx]=ry;
}
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        int n,l=0,r=0,flag=1,s=0;
        cin>>n;
        string c;
        memset(z,0,sizeof(z));
        for(int i=0;i<26;i++)
            pa[i]=i;
        for(int i=0;i<n;i++)
        {
            cin>>c;
            int a=c[0]-'a',b=c[c.size()-1]-'a';
            z[a].l++;
            z[b].r++;
            mer(a,b);
        }
        for(int i=0;i<26;i++)
            if((z[i].l||z[i].r)&&pa[i]==i)
            s++;
        if(s>1)
        {
            cout<<"The door cannot be opened.\n";
            continue;
        }
        for(int i=0;i<26;i++)
        {
            if(z[i].l==z[i].r) continue;
            else if(z[i].l-z[i].r==1)l++;
            else if(z[i].r-z[i].l==1)r++;
            else
            {
                flag=0;
                break;
            }
            if(l>1||r>1)
            {
                flag=0;
                break;
            }
        }
        if(l!=r)
            flag=0;
        if(flag)
            cout<<"Ordering is possible.\n";
        else
            cout<<"The door cannot be opened.\n";
    }
    return 0;
}

### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值