UPC 6610 Restoring Road Network

本文探讨了在已知城市间最短距离矩阵的情况下,如何判断是否存在满足条件的道路网络,并求解该网络的最短总长度。通过Floyd算法进行路径优化,验证了道路网络的可行性,最终实现了对总道路长度的有效计算。

 问题 C: Restoring Road Network

题目描述

In Takahashi Kingdom, which once existed, there are N cities, and some pairs of cities are connected bidirectionally by roads. The following are known about the road network:
People traveled between cities only through roads. It was possible to reach any city from any other city, via intermediate cities if necessary.
Different roads may have had different lengths, but all the lengths were positive integers.
Snuke the archeologist found a table with N rows and N columns, A, in the ruin of Takahashi Kingdom. He thought that it represented the shortest distances between the cities along the roads in the kingdom.
Determine whether there exists a road network such that for each u and v, the integer Au,v at the u-th row and v-th column of A is equal to the length of the shortest path from City u to City v. If such a network exist, find the shortest possible total length of the roads.

Constraints
1≤N≤300
If i≠j, 1≤Ai,j=Aj,i≤109.
Ai,i=0

输入

Input is given from Standard Input in the following format:
N
A1,1 A1,2 … A1,N
A2,1 A2,2 … A2,N

AN,1 AN,2 … AN,N

输出

If there exists no network that satisfies the condition, print -1. If it exists, print the shortest possible total length of the roads.

样例输入

3
0 1 3
1 0 2
3 2 0
样例输出
3
提示
The network below satisfies the condition:
City 1 and City 2 is connected by a road of length 1.
City 2 and City 3 is connected by a road of length 2.
City 3 and City 1 is not connected by a road.
#include<bits/stdc++.h>
using namespace std;
 
int n;
int a[305][305];
int dis[305][305];
int path[305][305];
 
void floyd()
{
    int i,j,k;
    for(k=0;k<n;k++)
    {
       for(i=0;i<n;i++)
       {
            for(j=0;j<n;j++)
            {
                if(dis[i][k]+dis[k][j]<=dis[i][j])
                {
                    dis[i][j]=dis[i][k]+dis[k][j];
                    path[i][j]++;
                }
            }
       }
    }
}
 
int main()
{
    while(~scanf("%d",&n))
    {
        memset(a,0,sizeof(a));
        memset(dis,0,sizeof(dis));
        memset(path,0,sizeof(path));
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
            {
                scanf("%d",&a[i][j]);
                dis[i][j]=a[i][j];
            }
        floyd();
        long long sum=0;
        int flag=0,f=0;
        for(int i=0;i<n&&flag==0;i++)
        {
            for(int j=0;j<n;j++)
            {
                if(path[i][j]==2)
                    sum+=a[i][j];
                if(a[i][j]!=dis[i][j])
                {
                    flag=1;
                    break;
                }
            }
        }
 
        if(flag==1)
        {
           printf("-1\n");
        }
        else
            printf("%lld\n",sum/2);
 
    }
    return 0;
}

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值