1 背景
京喜达技术部在社区团购场景下采用JDQ+Flink+Elasticsearch架构来打造实时数据报表。随着业务的发展Elasticsearch开始暴露出一些弊端,不适合大批量的数据查询,高频次分页导出导致宕机、存储成本较高。
Elasticsearch的查询语句维护成本较高、在聚合计算场景下出现数据不精确等问题。Clickhouse是列式数据库,列式型数据库天然适合OLAP场景,类似SQL语法降低开发和学习成本,采用快速压缩算法节省存储成本,采用向量执行引擎技术大幅缩减计算耗时。所以做此对比,进行Elasticsearch切换至Clickhouse工作。
2 OLAP
OLAP意思是On-Line Analytical Processing 联机分析处理,Clickhouse就是典型的OLAP联机分析型数据库管理系统(DBMS)。OLAP主要针对数据进行复杂分析汇总操作,比如我们业务系统每天都对当天所有运输团单做汇总统计,计算出每个省区的妥投率,这个操作就属于OLAP类数据处理。与OLAP类似的还有一个OLTP类数据处理,意思是On-Line Transaction Processing 联机事务处理,在OLTP场景中用户并发操作量会很大,要求系统实时进行数据操作的响应,需要支持事务,Mysql、Oracle、SQLServer等都是OLTP型数据库。
2.1 OLTP场景的特征
- 宽表,即每个表包含着大量的列
- 对于读取,从数据库中提取相当多的行,但只提取列的一小部分。
- 查询相对较少(通常每台服务器每秒查询数百次或更少)
- 查询结果明显小于源数据。换句话说,数据经过过滤或聚合,因此结果适合于单个服务器的RAM中
- 绝大多数是读请求
- 数据以相当大的批次(> 1000行)更新,而不是单行更新;或者根本没有更新。
- 对于简单查询,允许延迟大约50毫秒
- 列中的数据相对较小:数字和短字