再不学 Python 就来不及了

本文探讨了Python在高收入国家的显著增长,其在StackOverflow的浏览量超过其他主流编程语言。Python在过去五年中的增长速度惊人,尤其是在高收入国家,其流量增长超过了全球平均水平。此外,Python在非高收入国家也有强劲的增长势头。文章指出,尽管用户数量不能衡量语言质量,但Python在开发人员中的普及度和增长速度使其成为值得关注的技术趋势。

在这里插入图片描述

就高收入国家而言,Python 的增长甚至要比 Stack Overflow Trends 等工具展现的或其他针对全球的软件开发的排名更高。
– David Robinson

我们最近探讨了那些世界银行定义为高收入的富裕国家是如何倾向于使用与世界上其它地区不同的技术。这其中我们看到的最大的差异在于 Python 编程语言。就高收入国家而言,Python 的增长甚至要比 Stack Overflow Trends 等工具展现的或其他针对全球的软件开发的排名更高。

在本文中,我们将探讨在过去五年中 Python 编程语言的非凡增长,就如在高收入国家的 Stack Overflow 流量所示那样。“增长最快”一词很难准确定义,但是我们认为 Python 确实可以称得上增长最快的主流编程语言。

这篇文章中讨论的所有数字都是针对高收入国家的。它们一般指的是美国、英国、德国、加拿大等国家的趋势,他们加起来占了 Stack Overflow 大约 64% 的流量。许多其他国家,如印度、巴西、俄罗斯和中国,也为全球软件开发生态系统做出了巨大贡献,尽管我们也将看到 Python 在这方面有所增长,但本文对这些经济体的描述较少。

值得强调的是,一种语言的用户数量并不能衡量语言的品质:我们是在描述开发人员使用的语言,但没有规定任何东西。(完全披露:我曾经[5]主要使用 Python 编程,尽管我已经完全切换到 R 了)。

Python 在高收入国家的增长

你可以在 Stack Overflow Trends中看到,Python 在过去几年中一直在快速增长。但是对于本文,我们将重点关注高收入国家,考虑的是问题的浏览量而不是提出的问题数量(这基本上结果是类似的,但是每个月都有所波动,特别是对于较小的标签分类)。

我们有关于 Stack Overflow 问题的查看数据可以追溯到 2011 年底,在这段时间内,我们可以研究下 Python 相对于其他五种主要编程语言的增长。(请注意,这比 Stack Overflow Trends 的时间范围更短,它可追溯到 2008 年)。这些目前是高收入国家里十大访问最高的 Stack Overflow 标签中的六个。我们没有包括的四个是 CSS、HTML、Android 和 JQuery。

在这里插入图片描述
2017 年 6 月,Python 是成为高收入国家里 Stack Overflow 访问量最高的标签的第一个月。这也是美国和英国最受欢迎的标签,以及几乎所有其他高收入国家的前两名(接着就是 Java 或 JavaScript)。这是特别令人印象深刻的,因为在 2012 年,它比其他 5 种语言的访问量小,比当时增长了 2.5 倍。

部分原因是因为 Java 流量的季节性。由于它在本科课程中有很多课程[7],Java 流量在秋季和春季会上升,夏季则下降。到年底,它会再次赶上 Python 吗?我们可以尝试用一个叫做 “STL” 的模型来预测未来两年的增长, 它将增长与季节性趋势结合起来,来预测将来的变化。

在这里插入图片描述
根据这个模型,Python 可能会在秋季保持领先地位或被 Java 取代(大致在模型预测的变化范围之内),但是 Python 显然会在 2018 年成为浏览最多的标签。STL 还表明,与过去两年一样,JavaScript 和 Java 在高收入国家中的流量水平将保持相似水平。

什么标签整体上增长最快?

上面只看了六个最受欢迎的编程语言。在其他重大技术中,哪些是目前在高收入国家中增长最快的技术?

我们以 2017 年至 2016 年流量的比例来定义增长率。在此分析中,我们决定仅考虑编程语言(如 Java 和 Python)和平台(如 iOS、Android、Windows 和 Linux),而不考虑像 Angular[9] 或 TensorFlow 这样的框架(虽然其中许多有显著的增长,可能在未来的文章中分析)。

在这里插入图片描述
由于上面这个漫画中所描述的“最快增长”定义的激励,我们将增长与平均差异图中的整体平均值进行比较。

在这里插入图片描述
Python 以 27% 的年增长率成为了规模大、增长快的标签。下一个类似增长的最大标签是 R。我们看到,大多数其他大型标签的流量在高收入国家中保持稳定,浏览 Android、iOS 和 PHP 则略有下降。我们以前在 Flash 之死这篇文章中审查过一些正在衰减的标签,如 Objective-C、Perl 和 Ruby。我们还注意到,在函数式编程语言中,Scala 是最大的并且不断增长的,而 F# 和 Clojure 较小并且正在衰减,Haskell 则保持稳定。

上面的图表中有一个重要的遗漏:去年,有关 TypeScript 的问题流量增长了惊人的 142%,这使得我们需要去除它以避免压扁比例尺。你还可以看到,其他一些较小的语言的增长速度与 Python 类似或更快(例如 R、Go 和 Rust),而且还有许多标签,如 Swift 和 Scala,这些标签也显示出惊人的增长。它们随着时间的流量相比 Python 如何?

在这里插入图片描述
像 R 和 Swift 这样的语言的发展确实令人印象深刻,而 TypeScript 在更短的时间内显示出特别快速的扩张。这些较小的语言中,有许多从很少的流量成为软件生态系统中引人注目的存在。但是如图所示,当标签开始相对较小时,显示出快速增长更容易。

请注意,我们并不是说这些语言与 Python “竞争”。相反,这只是解释了为什么我们要把它们的增长分成一个单独的类别,这些是始于较低流量的标签。Python 是一个不寻常的案例,既是 Stack Overflow 中最受欢迎的标签之一,也是增长最快的其中之一。(顺便说一下,它也在加速!自 2013 年以来,每年的增长速度都会更快)。

世界其他地区

在这篇文章中,我们一直在分析高收入国家的趋势。Python 在世界其他地区,如印度、巴西、俄罗斯和中国等国家的增长情况是否类似?

确实如此。

在这里插入图片描述
在高收入国家之外,Python 仍旧是增长最快的主要编程语言。它从较低的水平开始,两年后才开始增长(2014 年而不是 2012 年)。事实上,非高收入国家的 Python 同比增长率高于高收入国家。我们不会在这里研究它,但是 R (其它语言的使用与 GDP 正相关) 在这些国家也在增长。

在这篇文章中,许多关于高收入国家标签 (相对于绝对排名) 的增长和下降的结论,对世界其他地区都是正确的。两个部分增长率之间有一个 0.979 Spearman 相关性。在某些情况下,你可以看到类似于 Python 上发生的 “滞后” 现象,其中一个技术在高收入国家被广泛采用,一年或两年才能在世界其他地区扩大。(这是一个有趣的现象,这可能是未来文章的主题!)

下一次

我们不打算为任何“语言战争”提供弹药。一种语言的用户数量并不意味着它的质量,而且肯定不会让你知道哪种语言更适合某种特定情况。不过,考虑到这点,我们认为值得了解什么语言构成了开发者生态系统,以及生态系统会如何变化。

本文表明 Python 在过去五年中,特别是在高收入国家,显示出惊人的增长。在我们的下一篇文章中,我们将开始研究“为什么”。我们将按国家和行业划分增长情况,并研究有哪些其他技术与 Python 一起使用(例如,估计多少增长是由于 Python 用于 Web 开发而不是数据科学)。

在此期间,如果你使用 Python 工作,并希望你的职业生涯中进入下一阶段,那么在 Stack Overflow Jobs 上有些公司正在招聘 Python 开发。

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。在这里插入图片描述

二、Python必备开发工具

在这里插入图片描述

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述

四、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

六、Python练习题

检查学习结果。
在这里插入图片描述

七、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

这份完整版的Python全套学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

Python资料、技术、课程、解答、咨询也可以直接点击下面名片,添加官方客服斯琪

采用PyQt5框架与Python编程语言构建图书信息管理平台 本项目基于Python编程环境,结合PyQt5图形界面开发库,设计实现了一套完整的图书信息管理解决方案。该系统主要面向图书馆、书店等机构的日常运营需求,通过模块化设计实现了图书信息的标准化管理流程。 系统架构采用典型的三层设计模式,包含数据存储层、业务逻辑层和用户界面层。数据持久化方案支持SQLite轻量级数据库与MySQL企业级数据库的双重配置选项,通过统一的数据库操作接口实现数据存取隔离。在数据建模方面,设计了包含图书基本信息、读者档案、借阅记录等核心数据实体,各实体间通过主外键约束建立关联关系。 核心功能模块包含六大子系统: 1. 图书编目管理:支持国际标准书号、中国图书馆分类法等专业元数据的规范化著录,提供批量导入与单条录入两种数据采集方式 2. 库存动态监控:实时追踪在架数量、借出状态、预约队列等流通指标,设置库存预警阈值自动提醒补货 3. 读者服务管理:建立完整的读者信用评价体系,记录借阅历史与违规行为,实施差异化借阅权限管理 4. 流通业务处理:涵盖借书登记、归还处理、续借申请、逾期计算等标准业务流程,支持射频识别技术设备集成 5. 统计报表生成:按日/月/年周期自动生成流通统计、热门图书排行、读者活跃度等多维度分析图表 6. 系统维护配置:提供用户权限分级管理、数据备份恢复、操作日志审计等管理功能 在技术实现层面,界面设计遵循Material Design设计规范,采用QSS样式表实现视觉定制化。通过信号槽机制实现前后端数据双向绑定,运用多线程处理技术保障界面响应流畅度。数据验证机制包含前端格式校验与后端业务规则双重保障,关键操作均设有二次确认流程。 该系统适用于中小型图书管理场景,通过可扩展的插件架构支持功能模块的灵活组合。开发过程中特别注重代码的可维护性,采用面向对象编程范式实现高内聚低耦合的组件设计,为后续功能迭代奠定技术基础。 资源来源于网络分享,仅用于习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值