窗口函数cluster_sample

介绍了一个名为booleancluster_sample的大数据处理函数,该函数用于对数据进行分组抽样,支持指定抽取的比例或数量,并展示了如何使用此函数从每组中抽取大约10%的数据。
命令格式:
boolean cluster_sample(bigint x[, bigint y])
        over(partition by col1[, col2..])
用途:
分组抽样参数说明:
x:Bigint类型常量,x>=1。若指定参数y,x表示将一个窗口分为x份;否则,x表示在一个窗口中抽取x行记录(即有x行返回值为true)。x为NULL时,返回值为NULL。
y:Bigint类型常量,y>=1,y<=x。表示从一个窗口分的x份中抽取y份记录(即y份记录返回值为true)。y为NULL时,返回值为NULL。
partition by col1[, col2]:指定开窗口的列。
返回值:Boolean类型。
示例,如表test_tbl中有key,value两列,key为分组字段,值有groupa,groupb两组,value为值,如下
    +------------+--------------------+
    | key        | value              |
    +------------+--------------------+
    | groupa     | -1.34764165478145  |
    | groupa     | 0.740212609046718  |
    | groupa     | 0.167537127858695  |
    | groupa     | 0.630314566185241  |
    | groupa     | 0.0112401388646925 |
    | groupa     | 0.199165745875297  |
    | groupa     | -0.320543343353587 |
    | groupa     | -0.273930924365012 |
    | groupa     | 0.386177958942063  |
    | groupa     | -1.09209976687047  |
    | groupb     | -1.10847690938643  |
    | groupb     | -0.725703978381499 |
    | groupb     | 1.05064697475759   |
    | groupb     | 0.135751224393789  |
    | groupb     | 2.13313102040396   |
    | groupb     | -1.11828960785008  |
    | groupb     | -0.849235511508911 |
    | groupb     | 1.27913806620453   |
    | groupb     | -0.330817716670401 |
    | groupb     | -0.300156896191195 |
    | groupb     | 2.4704244205196    |
    | groupb     | -1.28051882084434  |
    +------------+--------------------+
想要从每组中抽取约10%的值,可以用以下ODPS SQL完成:
    select key, value
    from (
        select key, value, cluster_sample(10, 1) over(partition by key) as flag
        from tbl
        ) sub
    where flag = true;
    +--------+--------------------+
    | key    | value              |
    +--------+--------------------+
    | groupa | -1.34764165478145  |
    | groupb | -0.725703978381499 |
    | groupb | 2.4704244205196    |
    +-----+-----------------------+
import cv2 import os import numpy as np import matplotlib.pyplot as plt import skimage.io as io from collections import Counter from PIL import Image import pandas as pd from scipy.signal import find_peaks from scipy.ndimage import gaussian_filter1d from sklearn.cluster import KMeans # 导入聚类模型 plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 data_dir = './附件4' path = data_dir + '/*.bmp' coll = io.ImageCollection(path) # 读入灰度图像 img_num = len(coll) # *********转矩阵******* img = np.asarray(coll) for i in range(0, len(coll)): img[i] = cv2.adaptiveThreshold(src=img[i], # 要进行处理的图片 maxValue=1, # 大于阈值后设定的值 adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C, # 自适应方法,ADAPTIVE_THRESH_MEAN_C:表区域内均值;ADAPTIVE_THRESH_GAUSSIAN_C:表区域内像素点加权求 thresholdType=cv2.THRESH_BINARY, # 同全局阈值法中的参数一样 blockSize=7, # 方阵(区域)大小, C=2) # 常数项,每个区域计算出的阈值的基础上在减去这个常数作为这个区域的最终阈值,可以为负数 print(img.shape) # *******计算每张图片的左右边距***** left = [] right = [] for i in range(0, img.shape[0]): # 计算每张图片同左边的距离 count = 0 for y in range(0, img.shape[2]): # 列 panduan = 1 for x in range(0, img.shape[1]): # 行 if (img[i][x][y] == 0): panduan = 0 break if (panduan == 1): count = count + 1 else: break left.append(count) # 计算每张图片同右边的距离 count = 0 for y in range(img.shape[2] - 1, -1, -1): # 列 panduan = 1 for x in range(0, img.shape[1]): # 行 if (img[i][x][y] == 0): panduan = 0 break if (panduan == 1): count = count + 1 else: break right.append(count) plt.scatter(range(0, len(left)), left) plt.scatter(range(0, len(right)), right) print(Counter(left)) print(Counter(right)) # *****确定行数******** # 可以从图中找到11个最右边最左边的图片 # 剩余的点 中可以计算 行间距 # 从散点图可以看出 行数为11 # 列数为 209/11 = 19 209为img.shape[0] fenge = 14 # 看图确定 或 通过计算得出count的平均值 col = 19 # 列数 row = 11 # 行数 left 或 right 中count值大于 fenge的个数 # **********最后一列图片*********** end_index = [] for i in range(0, len(right)): if (right[i] >= fenge): end_index.append(i) len(end_index) # **********找出第一列的图片index******* first_index = [] for i in range(0, len(left)): if (left[i] >= fenge): first_index.append(i) len(first_index) kong_width = [] zi_width = [] # ********计算每张图片连续的10的长度******** for i in range(0, img.shape[0]): width = 0 zj_kong = [] zj_zi = [] if (sum(img[i][0]) == img.shape[2]): # 空白行 qian = 0 else: qian = 1 for x in range(0, img.shape[1]): if (sum(img[i][x]) != img.shape[2]): # 字 xian = 0 else: xian = 1 if (qian != xian): if (qian == 0): if (width): zj_zi.append(width) else: if (width): zj_kong.append(width) width = 0 else: width = width + 1 qian = xian if (qian == 0): # 最后一行处理 zj_zi.append(width) else: zj_kong.append(width) kong_width.append(zj_kong) zi_width.append(zj_zi) print(kong_width[0]) print(zi_width[0]) # 统计分析 # 得出字宽为40、39、38 空白行宽度为27、26、28 ans = [] for i in kong_width: for j in i: ans.append(j) plt.scatter(range(0, len(ans)), ans) print("空白行宽度统计:" + str(Counter(ans))) ans = [] for i in zi_width: for j in i: ans.append(j) plt.scatter(range(0, len(ans)), ans) print("字宽统计:" + str(Counter(ans))) img1 = img # 掩码补全 对于段首空行段尾空行处理 为聚类做预处理 chuli_index_1 = [] # 需处理的图片 index 分为两种情况 如果需处理的行在第一行 需找到下界字的边缘行数 chuli_index_2 = [] # 如果在第一行 需找到上界字的边缘行数 count = 0 for i in kong_width: index = 0 for j in i: if (j > 32): if (index == 0): chuli_index_1.append(count) else: chuli_index_2.append(count) break index = index + 1 count = count + 1 print("进行掩码处理的图片数量:" + str(len(chuli_index_1) + len(chuli_index_2))) print("第一类需掩码处理的图片数量" + str(len(chuli_index_1))) print("第二类需掩码处理的图片数量" + str(len(chuli_index_2))) # 处理 # 第一种情况 需找到下界字的边缘行数 for index in chuli_index_1: # 找到第一行 first_index_ = 0 for x in range(0, img.shape[1]): # 行 if (sum(img[index][x]) != img.shape[2]): break first_index_ = x if (x - 30 - 35 < 0): first = 0 else: first = int(x - 30 - 35) for x in range(first, x - 30): for y in range(0, img.shape[2]): img1[index][x][y] = 0 # 第二种情况 需找到上界字的边缘行数 for index in chuli_index_2: # 找到上界行数 width = 0 zj_kong = [] hang = [] zj_zi = [] if (sum(img[index][0]) == img.shape[2]): # 空白行 qian = 0 else: qian = 1 for x in range(0, img.shape[1]): if (sum(img[index][x]) != img.shape[2]): # 字 xian = 0 else: xian = 1 if (qian != xian): if (qian == 0): if (width): zj_zi.append(width) else: if (width): zj_kong.append(width) hang.append(x) width = 0 else: width = width + 1 qian = xian if (qian == 0): # 最后一行处理 zj_zi.append(width) else: zj_kong.append(width) hang.append(x) Max = 0 for i in range(0, len(zj_kong)): if (zj_kong[i] > Max): Max = zj_kong[i] first_index_ = hang[i] - zj_kong[i] if (first_index_ + 30 + 35 >= img.shape[1]): end = img.shape[1] else: end = first_index_ + 30 + 35 for x in range(first_index_ + 30, end): for y in range(0, img.shape[2]): img1[index][x][y] = 0 # ***********聚类*********** # 修改特征提取函数 - 仅关注四线位置 def extract_four_lines_features(image): """ 提取英文文本的四线位置特征 image: 预处理后的二值图像 (0=文字, 1=空白) 返回: [文本行数量, 顶线位置, 中线位置, 基线位置, 底线位置] """ h, w = image.shape features = [0] * 5 # 初始化特征向量 # 1. 计算水平投影 horizontal_proj = np.sum(1 - image, axis=1) # 2. 检测文本行位置 threshold = 0.1 * w # 初始阈值 line_positions = [] in_text = False line_start = 0 for i, val in enumerate(horizontal_proj): if val > threshold: if not in_text: in_text = True line_start = i else: if in_text: in_text = False line_end = i if (line_end - line_start) > 8: # 最小行高5像素 line_positions.append((line_start, line_end)) # 处理最后一行 if in_text: line_end = len(horizontal_proj) - 1 if (line_end - line_start) > 5: line_positions.append((line_start, line_end)) # 如果没有检测到文本行,返回空白特征 if not line_positions: return features # 只考虑第一行文本(假设每个碎片只有一行文本) start, end = line_positions[0] line_img = image[start:end, :] line_height = end - start # 3. 计算垂直投影 vertical_proj = np.sum(1 - line_img, axis=0) # 4. 检测四线位置 # 顶线 - 文本行顶部 top_line = start # 基线 - 字母底部位置(垂直投影最大处) base_line = start + np.argmax(vertical_proj) # 中线 - 小写字母高度的一半处 mid_line = start + int(0.5 * (base_line - start)) # 底线 - 文本行底部 bottom_line = end # 设置特征值 features[0] = len(line_positions) # 文本行数量 features[1] = top_line # 顶线位置 features[2] = mid_line # 中线位置 features[3] = base_line # 基线位置 features[4] = bottom_line # 底线位置 return features # 为所有碎片提取特征 tezhe = [] for i in range(img1.shape[0]): features = extract_four_lines_features(img1[i]) tezhe.append(features) # 特征标准化 from sklearn.preprocessing import StandardScaler scaler = StandardScaler() tezhe_scaled = scaler.fit_transform(tezhe) # 转换为特征向量 x_train = pd.DataFrame(tezhe_scaled) kmeansmodel = KMeans(n_clusters=11, init='k-means++', random_state=150) y_kmeans = kmeansmodel.fit_predict(x_train) print("聚类结果统计:" + str(Counter(y_kmeans))) # 人工干预点1:聚类结果验证(带四线可视化) os.makedirs('./cluster_visualization', exist_ok=True) def visualize_with_four_lines(image, lines, idx): """ 可视化碎片并绘制四线 image: 碎片图像 lines: 四线位置 (top, mid, base, bottom) idx: 碎片索引 """ # 创建彩色图像用于可视化 if len(image.shape) == 2: vis_img = np.stack([image * 255] * 3, axis=-1).astype(np.uint8) else: vis_img = (image * 255).astype(np.uint8) # 绘制四线 colors = ['red', 'green', 'blue', 'purple'] labels = ['顶线', '中线', '基线', '底线'] for i, line in enumerate(lines): if line > 0: # 确保线位置有效 cv2.line(vis_img, (0, line), (image.shape[1] - 1, line), tuple((np.array(colors[i]) * 255).astype(int),out=None), 1) cv2.putText(vis_img, labels[i], (10, line - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.4, tuple((np.array(colors[i]) * 255).astype(int)), 1) # 添加碎片ID cv2.putText(vis_img, f'ID:{idx}', (5, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1) return vis_img print("正在生成聚类可视化结果(带四线)...") for cluster_id in range(11): cluster_samples = [i for i, label in enumerate(y_kmeans) if label == cluster_id] if not cluster_samples: continue # 创建可视化大图 sample_img = img1[cluster_samples[0]] h, w = sample_img.shape[:2] num_fragments = len(cluster_samples) cols = min(5, num_fragments) # 每行最多5个碎片 rows = (num_fragments + cols - 1) // cols # 创建空白大图(高度增加20像素用于显示标题) big_img = np.zeros((rows * (h + 20), cols * w, 3), dtype=np.uint8) + 255 for i, idx in enumerate(cluster_samples): row_idx = i // cols col_idx = i % cols # 获取四线位置 lines = tezhe[idx][1:5] # 提取四线位置 (top, mid, base, bottom) # 创建带四线可视化的碎片图像 frag_img = visualize_with_four_lines(img1[idx], lines, idx) # 放置碎片图像 y_start = row_idx * (h + 20) x_start = col_idx * w big_img[y_start:y_start + h, x_start:x_start + w] = frag_img # 添加聚类标签 cv2.putText(big_img, f'Cluster:{cluster_id}', (x_start + 5, y_start + h + 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1) # 保存大图 save_path = f'./cluster_visualization/cluster_{cluster_id}_four_lines.png' cv2.imwrite(save_path, big_img) # 显示大图 plt.figure(figsize=(15, 8)) plt.imshow(cv2.cvtColor(big_img, cv2.COLOR_BGR2RGB)) plt.title(f'Cluster {cluster_id} - {num_fragments} fragments') plt.axis('off') plt.show() manual_correction = input("是否需要人工调整聚类结果?(y/n): ") if manual_correction.lower() == 'y': print("当前聚类分配:") for i in range(len(coll)): print(f"碎片{i} -> 类{y_kmeans[i]}") corrections = input("输入需调整的碎片ID目标类(格式: 碎片ID:目标类, 多个用分号分隔): ") for corr in corrections.split(';'): fid, new_cls = map(int, corr.split(':')) y_kmeans[fid] = new_cls print("人工调整后的聚类统计:", Counter(y_kmeans)) # 分类结果 ans = {} count = 0 for i in y_kmeans: if (i in ans.keys()): ans[i].append(count) else: zj = [] zj.append(count) ans[i] = zj count += 1 ans_lei = ans # *******行内排序****** img1 = img img = np.asarray(coll) for i in range(0, len(coll)): img[i] = cv2.adaptiveThreshold(src=img[i], # 要进行处理的图片 maxValue=1, # 大于阈值后设定的值 adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C, # 自适应方法,ADAPTIVE_THRESH_MEAN_C:表区域内均值;ADAPTIVE_THRESH_GAUSSIAN_C:表区域内像素点加权求 thresholdType=cv2.THRESH_BINARY, # 同全局阈值法中的参数一样 blockSize=11, # 方阵(区域)大小, C=1) # 常数项,每个区域计算出的阈值的基础上在减去这个常数作为这个区域的最终阈值,可以为负数 hang_index = [] for i in range(0, len(ans_lei)): ans_index = [] # 用于记录的排序 ans_index.append(first_index[i]) # 插入第一张图片的索引 count1 = 0 while (count1 < len(ans_lei[y_kmeans[first_index[i]]]) - 2): count1 = count1 + 1 Max = -1 index = 0 zj = ans_index[len(ans_index) - 1] for j in ans_lei[y_kmeans[first_index[i]]]: if (ans_index.count(j) == 1 or end_index.count(j) == 1): if (end_index.count(j) == 1): yc = j continue count = 0 for x in range(0, img.shape[1]): # 遍历行遍历 左右元素 if (img[j][x][0] == img[zj][x][img.shape[2] - 1]): if (img[j][x][0] == 0): count += 0.6 count = count + 1 count2 = abs(sum(img[j][0]) - sum(img[zj][img.shape[1] - 1])) loss = count * 0.5 - count1 * 0.8 if (loss > Max): Max = loss index = j ans_index.append(index) ans_index.append(yc) print(ans_index) hang_index.append(ans_index) # 人工干预点2:行内排序验证 row_img = coll[ans_index[0]] for j in range(1, len(ans_index)): row_img = np.hstack((row_img, coll[ans_index[j]])) plt.figure(figsize=(15, 3)) plt.imshow(row_img, cmap='gray') plt.title(f'第{i}行自动排序结果') plt.axis('off') plt.show() manual_adjust = input(f"第{i}行排序是否正确?(y/n): ") if manual_adjust.lower() == 'n': print("当前顺序:", ans_index) new_order = list(map(int, input("输入正确顺序(用空格分隔): ").split())) ans_index = new_order # ******按行拼接图片查看效果********排序效果很好 ans_hang_img = [] for i in range(0, len(hang_index)): ans_img = coll[hang_index[i][0]] for j in range(0, len(hang_index[i])): if (j == 0): continue ans_img = np.hstack((ans_img, coll[hang_index[i][j]])) # 水平合并 ans_hang_img.append(ans_img) im = Image.fromarray(ans_hang_img[5]) # to Image img_ = np.array(ans_hang_img) img_.shape # 11行图片 # 二值化 加快运算速度 for i in range(0, len(img_)): img_[i] = cv2.adaptiveThreshold(src=img_[i], # 要进行处理的图片 maxValue=1, # 大于阈值后设定的值 adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C, # 自适应方法,ADAPTIVE_THRESH_MEAN_C:表区域内均值;ADAPTIVE_THRESH_GAUSSIAN_C:表区域内像素点加权求 thresholdType=cv2.THRESH_BINARY, # 同全局阈值法中的参数一样 blockSize=11, # 方阵(区域)大小, C=1) # 常数项,每个区域计算出的阈值的基础上在减去这个常数作为这个区域的最终阈值,可以为负数 # *******将以上拼接好的行图片进行竖方向的拼接 # ***找到第一行index Max = 0 first_hang_index = 0 for i in range(0, img_.shape[0]): # 计算每张行图片同顶部的距离 for x in range(0, img_.shape[1]): # 行 if (sum(img_[i][x]) != img_.shape[2]): if (x > Max): Max = x first_hang_index = i break # ***找到最后一行index Max = 0 end_hang_index = 0 for i in range(0, img_.shape[0]): # 计算每张行图片同顶部的距离 for x in range(img_.shape[1] - 1, -1, -1): # 行 if (sum(img_[i][x]) != img_.shape[2]): if (179 - x > Max): Max = 179 - x end_hang_index = i break # 列排序 lie_index = [] lie_index.append(first_hang_index) # 行排序 列的第一个 行图片index while (1): Max = -1 index = 0 zj = lie_index[len(lie_index) - 1] for j in range(0, img_.shape[0]): if (lie_index.count(j) == 1 or j == end_hang_index): continue count = 0 for y in range(0, img_.shape[2]): # 遍历行遍历 if (img_[j][0][y] == img_[zj][img_.shape[1] - 1][y]): if (img_[j][0][y] == 0): count += 0.3 count = count + 1 count1 = abs(sum(img_[j][0]) - sum(img_[zj][img_.shape[1] - 1])) loss = count * 0.5 - count1 * 0.3 if (loss > Max): Max = loss index = j lie_index.append(index) if (len(lie_index) >= img_.shape[0] - 1): break lie_index.append(end_hang_index) print("列排序:" + str(lie_index)) # ******图片列拼接 输出最终拼接图片 基于拼接好的ans_hang_img图片矩阵 ans_img = [] ans_img = ans_hang_img[lie_index[0]] for i in range(0, len(lie_index)): if (i == 0): continue ans_img = np.vstack((ans_img, ans_hang_img[lie_index[i]])) # im = Image.fromarray(ans_img) # to Image # 人工干预点3:垂直拼接验证 plt.figure(figsize=(10, 15)) plt.imshow(ans_img, cmap='gray') plt.title('垂直拼接结果预览') plt.axis('off') plt.show() vertical_correction = input("垂直拼接是否正确?(y/n): ") if vertical_correction.lower() == 'n': print("当前行顺序:", lie_index) new_vertical_order = list(map(int, input("输入正确行顺序(用空格分隔): ").split())) # 重新垂直拼接 ans_img = ans_hang_img[new_vertical_order[0]] for i in range(1, len(new_vertical_order)): ans_img = np.vstack((ans_img, ans_hang_img[new_vertical_order[i]])) im.save('result4.png')生成聚类可视化结果时,代码直接结束了,没有生成图片,请找出原因
最新发布
08-12
import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.signal import savgol_filter # 修正函数名称 from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler import seaborn as sns from matplotlib.ticker import MaxNLocator # 设置中文显示 plt.rcParams["font.family"] = ["SimHei", "WenQuanYi Micro Hei", "Heiti TC"] plt.rcParams["axes.unicode_minus"] = False # 解决负号显示问题 # 1. 读取数据 - 请将此处路径修改为你的文件实际路径 df = pd.read_excel('附件 1_预处理后.xlsx') # 修改为本地文件路径 # 提取光谱数据(排除No列) spectra_data = df.iloc[:, 1:].values # 所有样本的光谱数据 wavelengths = df.columns[1:].astype(int) # 波数 sample_ids = df['No'].values # 样本编号 # 2. SG平滑与一阶导数处理(使用论文问题一参数) window_length = 11 # 窗口大小 poly_order = 2 # 多项式阶数 # SG平滑 - 使用修正后的函数名称 sg_smoothed = savgol_filter(spectra_data, window_length, poly_order, axis=1) # 一阶导数 sg_first_deriv = np.gradient(sg_smoothed, axis=1) # 3. 数据标准化 scaler = StandardScaler() scaled_data = scaler.fit_transform(sg_first_deriv) # 4. PCA降维(根据论文问题一,SG一阶导数需要12个主成分) pca = PCA(n_components=12) pca_result = pca.fit_transform(scaled_data) # 5. K-means聚类(分为6个类别) kmeans = KMeans(n_clusters=6, random_state=42, n_init=10) clusters = kmeans.fit_predict(pca_result) # 6. 保存聚类结果 cluster_results = pd.DataFrame({ '样本编号': sample_ids, '聚类类别': clusters + 1 # 类别从1开始 }) cluster_results.to_excel('聚类结果.xlsx', index=False) print("聚类结果已保存至'聚类结果.xlsx'") # 7. 可视化聚类结果(图9SG风格) # 7.1 各类别中心光谱一阶导数曲线 plt.figure(figsize=(12, 8)) for cluster_id in range(6): # 获取该类别的所有样本 cluster_samples = sg_first_deriv[clusters == cluster_id] # 计算均值曲线 mean_curve = np.mean(cluster_samples, axis=0) # 绘制曲线 plt.plot(wavelengths, mean_curve, label=f'类别{cluster_id + 1}', linewidth=2) plt.xlabel('波数 (cm⁻¹)') plt.ylabel('SG一阶导数') plt.title('各类别SG一阶平滑导数平均曲线') plt.legend(loc='best') plt.grid(alpha=0.3) plt.tight_layout() plt.savefig('各类别SG一阶导数平均曲线.png', dpi=300) plt.show() # 7.2 PCA降维可视化(前2个主成分) plt.figure(figsize=(10, 8)) scatter = plt.scatter(pca_result[:, 0], pca_result[:, 1], c=clusters, cmap='tab10', alpha=0.7, s=50) plt.xlabel(f'主成分1 (贡献率: {pca.explained_variance_ratio_[0]:.2%})') plt.ylabel(f'主成分2 (贡献率: {pca.explained_variance_ratio_[1]:.2%})') plt.title('PCA降维聚类散点图 (前2个主成分)') plt.colorbar(scatter, label='聚类类别') plt.grid(alpha=0.3) plt.tight_layout() plt.savefig('PCA降维聚类散点图.png', dpi=300) plt.show() # 7.3 聚类类别数量统计 plt.figure(figsize=(8, 6)) sns.countplot(x=clusters + 1) plt.xlabel('聚类类别') plt.ylabel('样本数量') plt.title('各类别样本数量分布') plt.xticks(range(6), [f'类别{i+1}' for i in range(6)]) plt.gca().yaxis.set_major_locator(MaxNLocator(integer=True)) # 确保y轴为整数 plt.grid(axis='y', alpha=0.3) plt.tight_layout() plt.savefig('各类别样本数量分布.png', dpi=300) plt.show() # 8. 输出聚类中心的主成分值 cluster_centers = pd.DataFrame( kmeans.cluster_centers_, columns=[f'主成分{i+1}' for i in range(12)] ) cluster_centers.index.name = '聚类类别' cluster_centers.index += 1 # 类别从1开始 print("\n聚类中心的主成分值:") print(cluster_centers) 代码如上 报错内容如下 E:\Anaconda\python.exe "C:\Users\cheny\Desktop\PythonProject2\图 9SG 一阶平滑导数聚类特征类别.py" E:\Anaconda\Lib\site-packages\sklearn\cluster\_kmeans.py:1429: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=2. warnings.warn( 聚类结果已保存至'聚类结果.xlsx' findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. C:\Users\cheny\Desktop\PythonProject2\图 9SG 一阶平滑导数聚类特征类别.py:66: UserWarning: Glyph 8315 (\N{SUPERSCRIPT MINUS}) missing from font(s) SimHei. plt.tight_layout() C:\Users\cheny\Desktop\PythonProject2\图 9SG 一阶平滑导数聚类特征类别.py:66: UserWarning: Glyph 185 (\N{SUPERSCRIPT ONE}) missing from font(s) SimHei. plt.tight_layout() findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. C:\Users\cheny\Desktop\PythonProject2\图 9SG 一阶平滑导数聚类特征类别.py:67: UserWarning: Glyph 8315 (\N{SUPERSCRIPT MINUS}) missing from font(s) SimHei. plt.savefig('各类别SG一阶导数平均曲线.png', dpi=300) C:\Users\cheny\Desktop\PythonProject2\图 9SG 一阶平滑导数聚类特征类别.py:67: UserWarning: Glyph 185 (\N{SUPERSCRIPT ONE}) missing from font(s) SimHei. plt.savefig('各类别SG一阶导数平均曲线.png', dpi=300) findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. C:\Users\cheny\Desktop\PythonProject2\图 9SG 一阶平滑导数聚类特征类别.py:68: UserWarning: Glyph 8315 (\N{SUPERSCRIPT MINUS}) missing from font(s) SimHei. plt.show() C:\Users\cheny\Desktop\PythonProject2\图 9SG 一阶平滑导数聚类特征类别.py:68: UserWarning: Glyph 185 (\N{SUPERSCRIPT ONE}) missing from font(s) SimHei. plt.show() findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found. findfont: Font family 'WenQuanYi Micro Hei' not found. findfont: Font family 'Heiti TC' not found.
08-05
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值