LeetCode02—无重复字符的最长子串

本文深入探讨了求解字符串中最长无重复字符子串长度的算法,通过滑动窗口结合HashSet与HashMap的数据结构实现,提供了Java代码示例,帮助读者理解和掌握这一经典算法问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

在这里插入图片描述

基本思路

滑动窗口

  • 利用HashSet实现
  • 利用HashMap实现

Java实现

  • HashSet
    public static int lengthOfLongestSubstring3(String s) {
        if(s == null || s.length() == 0) return  0;

        HashSet<Character> set = new HashSet<>();
        int res = 0;
        for(int i = 0, j = 0; i < s.length(); i ++ ) {
            if(set.contains(s.charAt(i))) {
                set.remove(s.charAt(j));
                j++;
                i--;
            } else {
                set.add(s.charAt(i));
                res = Math.max(res, i - j + 1);
            }
        }
        return res;
     }
  • HashMap
    public static int lengthOfLongestSubstring2(String s) {
        if( s == null || s.length() == 0) return 0;
        HashSet<Character> set = new HashSet<>();
        int res = 0;
        for(int i = 0, j = 0; i < s.length(); i++) {
            if(set.contains(s.charAt(i))) {
                set.remove(s.charAt(j));
                j++;
            } else {
                set.add(s.charAt(i));
                res = Math.max(res, i - j + 1);
            }
        }
        return res;
    }

基于Spring Boot搭建的一个多功能在线学习系统的实现细节。系统分为管理员和用户两个主要模块。管理员负责视频、文件和文章资料的管理以及系统运营维护;用户则可以进行视频播放、资料下载、参与学习论坛并享受个性化学习服务。文中重点探讨了文件下载的安全性和性能优化(如使用Resource对象避免内存溢出),积分排行榜的高效实现(采用Redis Sorted Set结构),敏感词过滤机制(利用DFA算法构建内存过滤树)以及视频播放的浏览器兼容性解决方案(通过FFmpeg调整MOOV原子位置)。此外,还提到了权限管理方面自定义动态加载器的应用,提高了系统的灵活性和易用性。 适合人群:对Spring Boot有一定了解,希望深入理解其实际应用的技术人员,尤其是从事在线教育平台开发的相关从业者。 使用场景及目标:适用于需要快速搭建稳定高效的在线学习平台的企业或团队。目标在于提供一套完整的解决方案,涵盖从资源管理到用户体验优化等多个方面,帮助开发者更好地理解和掌握Spring Boot框架的实际运用技巧。 其他说明:文中不仅提供了具体的代码示例和技术思路,还分享了许多实践经验教训,对于提高项目质量有着重要的指导意义。同时强调了安全性、性能优化等方面的重要性,确保系统能够应对大规模用户的并发访问需求。
### LeetCode '无重复字符长子' 的 Python 实现 此问题的目标是从给定字符中找到不包含任何重复字符的长子长度。以下是基于滑动窗口算法的一种高效解决方案。 #### 方法概述 通过维护一个动态窗口来跟踪当前无重复字符的子范围,可以有效地解决该问题。具体来说,利用哈希表记录每个字符近一次出现的位置,并调整窗口左边界以排除重复项。 #### 代码实现 以下是一个标准的 Python 解决方案: ```python def lengthOfLongestSubstring(s: str) -> int: char_index_map = {} # 存储字符及其新索引位置 max_length = 0 # 记录大子长度 start = 0 # 当前窗口起始位置 for i, char in enumerate(s): # 遍历字符 if char in char_index_map and char_index_map[char] >= start: # 如果发现重复字符,则更新窗口起点 start = char_index_map[char] + 1 char_index_map[char] = i # 更新或新增字符对应的索引 current_length = i - start + 1 # 当前窗口大小 max_length = max(max_length, current_length) # 更新大长度 return max_length ``` 上述代码的核心逻辑在于使用 `char_index_map` 来存储已访问过的字符以及它们后出现的位置[^1]。当遇到重复字符时,重新计算窗口的起始点并继续扩展窗口直到遍历结束[^2]。 对于输入 `"abcabcbb"`,执行过程如下: - 初始状态:`start=0`, `max_length=0` - 处理到第3个字符 `'c'` 之前未检测到重复,此时 `max_length=3` - 发现有重复字符 `'a'` 后移动窗口左侧至新位置,终返回结果为 `3`. 同样地,在处理像 `"bbbbb"` 这样的极端情况时也能正确得出答案为 `1`[^4]. #### 时间复杂度与空间复杂度分析 时间复杂度 O(n),其中 n 是字符长度;因为每个字符多被访问两次——加入和移除窗口各一次。 空间复杂度 O(min(m,n)) ,m 表示 ASCII 字符集大小 (通常固定为128), 而 n 取决于实际输入字符长度[^5]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值