代码随想录算法训练营第24天| 回溯算法理论基础、77. 组合

本文详细阐述了回溯算法的基本框架,包括函数模板、终止条件的设置、遍历过程以及在解决组合问题中的应用。重点讨论了如何通过剪枝优化减少搜索空间,优化后的算法时间复杂度为O(n*2^n),空间复杂度为O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回溯算法三部曲

  • 回溯函数模板返回值以及参数
    在回溯算法中,函数名一般为backtracking,函数返回值一般为void。回溯算法需要的参数不容易一次性确定,一般是先写逻辑后确定参数。

    回溯函数伪代码如下:

    void backtracking(参数)
    
  • 回溯函数终止条件
    回溯算法一般可以抽象为树形结构,我们在二叉树递归时需要终止条件,在回溯时也需要。和二叉树类似,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。
    所以回溯函数终止条件伪代码如下:

    if (终止条件) {
        存放结果;
        return;
    }
    
  • 回溯搜索的遍历过程
    回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
    在这里插入图片描述

回溯函数遍历过程伪代码如下:

for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
    处理节点;
    backtracking(路径,选择列表); // 递归
    回溯,撤销处理结果
}

for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。

backtracking这里自己调用自己,实现递归。

分析完过程,回溯算法模板框架如下:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

这份模板很重要,后面做回溯法的题目都靠它了!

77. 组合

题目链接:组合

题目描述:给定两个整数 nk,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

解题思想:

把组合问题抽象为如下树形结构:
在这里插入图片描述

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围

图中可以发现n相当于树的宽度,k相当于树的深度

图中每次搜索到了叶子节点,我们就找到了一个结果

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

class Solution {
public:
    vector<vector<int>> combine(int n, int k) {
        backtracking(n, k, 1);
        return result;
    }

private:
    vector<int> path;
    vector<vector<int>> result;
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= n; i++) {
            path.push_back(i);
            backtracking(n, k, i + 1);
            path.pop_back();
        }
    }
};

剪枝优化:

我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。

在遍历的过程中有如下代码:

for (int i = startIndex; i <= n; i++) {
    path.push_back(i);
    backtracking(n, k, i + 1);
    path.pop_back();
}

这个遍历的范围是可以剪枝优化的,怎么优化呢?

来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。

这么说有点抽象,如图所示:
在这里插入图片描述
所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置
如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了

接下来看一下优化过程如下:

  1. 已经选择的元素个数:path.size();
  2. 所需需要的元素个数为: k - path.size();
  3. 列表中剩余元素(n-i) >= 所需需要的元素个数(k - path.size())
  4. 在集合n中至多要从该起始位置 : i <= n - (k - path.size()) + 1,开始遍历

优化后整体代码如下:

class Solution {
public:
    vector<vector<int>> combine(int n, int k) {
        backtracking(n, k, 1);
        return result;
    }

private:
    vector<int> path;
    vector<vector<int>> result;
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) {
            path.push_back(i);
            backtracking(n, k, i + 1);
            path.pop_back();
        }
    }
};
  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值