POJ2559
这是最基本的,宽度都为1,只需考虑高度即可。对于每个矩形,我们从它往左开始找到第一个高度小于它的,记找到的左界为Li,同理,找到的右界为Ri,则以这个举行为基准找到的最大矩形面积为Hi*(Ri-Li+1)。寻找边界的过程可以用一个单调栈来高效地完成。
#include<cstdio>
#include<cstring>
#include<string>
#include<cctype>
#include<iostream>
#include<set>
#include<map>
#include<cmath>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#define fin(a) freopen("a.txt","r",stdin)
#define fout(a) freopen("a.txt","w",stdout)
typedef long long LL;
using namespace std;
const int INF = 1e8 + 10;
const int maxn = 1e5 + 10;
int h[maxn], st[maxn], L[maxn], R[maxn];
int n;
int main() {
while(scanf("%d", &n) && n) {
for(int i = 1; i <= n; i++) scanf("%d", &h[i]);
int t = 0;
for(int i = 1; i <= n; i++) {
while(t > 0 && h[st[t-1]] >= h[i]) t--;
L[i] = (t == 0 ? 1 : st[t-1]+1);
st[t++] = i;
}
t = 0;
for(int i = n; i >= 1; i--) {
while(t > 0 && h[st[t-1]] >= h[i]) t--;
R[i] = (t == 0 ? n : st[t-1]-1);
st[t++] = i;
}
LL ans = 0;
for(int i = 1; i <= n; i++) {
ans = max(ans, (LL)h[i] * (LL)(R[i]-L[i]+1));
}
cout << ans << endl;
}
return 0;
}
这个和上题唯一的不同是,每个矩形的宽度不定,只要在最后计算时注意一下宽度即可。
#include<cstdio>
#include<cstring>
#include<string>
#include<cctype>
#include<iostream>
#include<set>
#include<map>
#include<cmath>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<bitset>
#include<algorithm>
#define fin(a) freopen("a.txt","r",stdin)
#define fout(a) freopen("a.txt","w",stdout)
typedef long long ll;
using namespace std;
const int maxn = 50005;
int h[maxn], w[maxn], st[maxn], L[maxn], R[maxn];
int n;
ll solve() {
ll ans = 0;
int t = 0;
for(int i = 1; i <= n; i++) {
while(t > 0 && h[st[t-1]] >= h[i]) t--;
L[i] = (!t ? 1 : st[t-1]+1);
st[t++] = i;
}
t = 0;
for(int i = n; i >= 1; i--) {
while(t > 0 && h[st[t-1]] >= h[i]) t--;
R[i] = (!t ? n : st[t-1]-1);
st[t++] = i;
}
for(int i = 1; i <= n; i++) {
int W = w[R[i]] - w[L[i]-1];
ans = max(ans, (ll)W*h[i]);
}
return ans;
}
int main() {
while(scanf("%d", &n) && n+1) {
for(int i = 1; i <= n; i++) {
scanf("%d%d", &w[i], &h[i]);
w[i] += w[i-1];
}
printf("%lld\n", solve());
}
return 0;
}
POJ 3494
给一个01矩阵,找一个最大的子矩阵,使得其中所有元素都为一。
我们可以以每一行为基准线,求以这一行为底的最大矩形面积,则每个小矩形的高为,从他开始往上找到的连续1的个数(直到第一个0出现为止)。
#include<cstdio>
#include<cstring>
#include<string>
#include<cctype>
#include<iostream>
#include<set>
#include<map>
#include<cmath>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#define fin(a) freopen("a.txt","r",stdin)
#define fout(a) freopen("a.txt","w",stdout)
typedef long long ll;
using namespace std;
const int INF = 1e8 + 10;
const int maxn = 2005;
int a[maxn][maxn], h[maxn], L[maxn], R[maxn], st[maxn];
int r, c;
int solve() {
int ans = 0;
int t = 0;
for(int i = 1; i <= c; i++) {
while(t > 0 && h[st[t-1]] >= h[i]) t--;
L[i] = (!t ? 1 : st[t-1]+1);
st[t++] = i;
}
t = 0;
for(int i = c; i >= 1; i--) {
while(t > 0 && h[st[t-1]] >= h[i]) t--;
R[i] = (!t ? c : st[t-1]-1);
st[t++] = i;
}
for(int i = 1; i <= c; i++)
ans = max(ans, h[i] * (R[i]-L[i]+1));
return ans;
}
int main() {
while(scanf("%d%d", &r, &c) == 2) {
int mx = 0;
for(int i = 1; i <= r; i++) {
for(int j = 1; j <= c; j++) {
scanf("%d", &a[i][j]);
h[j] = (a[i][j] ? h[j]+1 : 0);
}
mx = max(mx, solve());
}
printf("%d\n", mx);
}
return 0;
}