Wilbur the pig is tinkering with arrays again. He has the array a1, a2, ..., an initially consisting of n zeros. At one step, he can choose any index i and either add 1 to all elements ai, ai + 1, ... , an or subtract 1 from all elements ai, ai + 1, ..., an. His goal is to end up with the array b1, b2, ..., bn.
Of course, Wilbur wants to achieve this goal in the minimum number of steps and asks you to compute this value.
The first line of the input contains a single integer n (1 ≤ n ≤ 200 000) — the length of the array ai. Initially ai = 0 for every position i, so this array is not given in the input.
The second line of the input contains n integers b1, b2, ..., bn ( - 109 ≤ bi ≤ 109).
Print the minimum number of steps that Wilbur needs to make in order to achieve ai = bi for all i.
5 1 2 3 4 5
5
4 1 2 2 1
3
In the first sample, Wilbur may successively choose indices 1, 2, 3, 4, and 5, and add 1 to corresponding suffixes.
In the second sample, Wilbur first chooses indices 1 and 2 and adds 1 to corresponding suffixes, then he chooses index 4 and subtract 1
题意:原串(长度为 n)是全 0,给出一个目标串,要求从原串变成目标串的最少步数。每一步可以任选一个原串下标 i , 然后进行加 1 或减 1 的操作(对数组下标 i 到 n的数字都操作)。
思路:因为操作是*左影响了右*,所以想到从左往右遍历,依次比较原串与目标串的对位数字之差,再用变量 sum 累加改变量,用临时变量 tmp 存某一次原串与目标串对位数字之差的绝对值,每次加上此绝对值即得答案 ans。
坑点:一定要用 long long,不然会超 int 范围导致WA!!!
code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 0x3f3f3f3f
typedef long long ll;
ll src[200020], des[200020];
using namespace std;
int main()
{
#ifdef OFFLINE
freopen("t.txt","r",stdin);
#endif
ll i, j, n, ans=0;
scanf("%lld", &n);
for(i=1;i<=n;i++){
scanf("%lld", &des[i]);
}
memset(src, 0, sizeof(src));
ll tmp=0, sum=0;
for(i=1;i<=n;i++){//从左往右(左影响右)
if(des[i]==src[i]+sum) continue;//对位相等则不用改变
tmp=des[i]-(src[i]+sum);//原串与目的串对位数字之差
sum+=tmp;//累加改变量的变量sum
ans+=abs(tmp);//加每位对位之差的绝对值
}
printf("%lld\n", ans);
return 0;
}