大数据面试之——大数据解决方案思维题

本文探讨了大数据面试中常见的挑战,包括如何在内存限制下查找共同URL、处理大文件中的高频词、提取日志中的访问IP、找出不重复整数等。通过分治、哈希映射、Bloom Filter等方法,提供了高效解决方案。
1.给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?
  • 方案1:假如每个url大小为10bytes,那么可以估计每个文件的大小为50G×64=320G,远远大于内存限制的4G,所以不可能将其完全加载到内存中处理,可以采用分治的思想来解决。
    • Step1:遍历文件a,对每个url求取hash(url)%1000,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,…,a999,每个小文件约300M);
    • Step2:遍历文件b,采取和a相同的方式将url分别存储到1000个小文件(记为b0,b1,…,b999);
      巧妙之处:这样处理后,所有可能相同的url都被保存在对应的小文件(a0vsb0,a1vsb1,…,a999vsb999)中,不对应的小文件不可能有相同的url。然后我们只要求出这个1000对小文件中相同的url即可。
    • Step3:求每对小文件ai和bi中相同的url时,可以把ai的url存储到hash_set/hash_map中。然后遍历bi的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。
  • 方案2:如果允许有一定的错误率,可以使用Bloomfilter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloomfilter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloomfilter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。
2.有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M,要求返回频数最高的100个词
  • Step1:顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为f0,f1,…,f4999)中,这样每个文件大概是200
### 回答1: 大数据面试——spark数据倾斜调优(五) 在Spark中,数据倾斜是一个常见的问,它会导致任务执行时间过长,甚至导致任务失败。因此,我们需要对数据倾斜进行调优。 以下是一些调优方法: 1. 均匀分布数据 如果数据倾斜是由于数据分布不均匀导致的,可以尝试使用随机数将数据均匀分布到不同的分区中。可以使用repartition或coalesce方法来实现。 2. 使用聚合函数 如果数据倾斜是由于某些键的值过大导致的,可以尝试使用聚合函数,如reduceByKey或aggregateByKey,将键值对合并为一个值。这样可以减少数据传输量,从而减少数据倾斜。 3. 使用随机前缀 如果数据倾斜是由于某些键的值过大导致的,可以尝试使用随机前缀来将键值对分散到不同的分区中。可以使用map方法来实现。 4. 使用自定义分区器 如果数据倾斜是由于默认的哈希分区器导致的,可以尝试使用自定义分区器来将数据均匀分布到不同的分区中。可以实现Partitioner接口来自定义分区器。 5. 使用广播变量 如果数据倾斜是由于某些变量在多个任务中重复计算导致的,可以尝试使用广播变量来共享变量。可以使用broadcast方法来实现。 6. 使用缓存 如果数据倾斜是由于某些数据在多个任务中重复使用导致的,可以尝试使用缓存来避免重复计算。可以使用cache或persist方法来实现。 以上是一些常见的调优方法,但具体的调优方法需要根据具体的情况来选择。 ### 回答2: 在Spark任务中,数据倾斜可能会导致某些任务的执行时间远远超过其他任务,从而导致整个Spark应用程序的执行时间延长。为了解决这个问,可以采取以下优化措施: 1.数据预处理:可以通过分析数据的相关性以及倾斜数据的分布情况来提前对数据进行处理和转换,以便尽可能地把数据分散到多个partition中。例如,可以采用哈希等方式,将数据平均地分配到多个分区中去。 2.增加分区数量:如果数据存在明显的倾斜态势,那么可以通过增加partition的数量来缓解数据倾斜的影响。可以使用repartition或者coalesce算子来增加分区数量。 3.采用随机算法:随机算法可以有效地减少数据倾斜的影响。例如,在join操作中,可以采用随机抽样的方式来选择少数表的关联键,以达到数据均衡的目的。 4.使用自定义累加器:如果数据倾斜只存在于某些关键数据上,可以采用自定义累加器的方式减少数据倾斜的影响。例如,在计算word count时,可以使用Accumulator来统计单词出现的次数,以达到数据均衡的目的。 5.使用Broadcast变量:如果数据倾斜存在于join表中的话,可以使用Broadcast变量将较小的表广播到每个节点,以减少网络传输的消耗。 综上所述,解决Spark数据倾斜问需要综合考虑数据处理方式、partition数量、算法选择等方面,根据实际情况来设计和优化Spark应用程序,以达到优化性能、提升运行效率的目的。 ### 回答3: Spark数据倾斜是一个常见的问,它发生的原因可能是数据分布不均匀或者数据特征相似性较高等。如果不加以处理,数据倾斜会导致运行时间变长,资源浪费,甚至导致任务失败等一系列问。因此,调优是十分必要的。 一般情况下,Spark数据倾斜调优的方法主要分为以下几种: 1. 手动调节shuffle分区的数量 数据倾斜时,可以通过调整shuffle的分区数量来缓解压力。当数据分布较为均匀时,增加分区数量可以提高并行度,更好地利用资源,减少运行时间。但是原本数据分布不均匀的情况下,增加分区数量只能加重分区内的数据倾斜问。 2. 增加随机前缀或者后缀 随机前缀或者后缀是一种常用的解决Spark数据倾斜的方法。它通过对相同Key的Value加上随机数的前缀或者后缀,然后再进行处理,将原本的数据压平,以达到均匀分布的效果。 3. 使用Spark SQL的聚合函数 Spark SQL的聚合函数可以更好地解决数据倾斜的问。如果遇到有大量重复Key的情况,可以使用Spark SQL中的ReduceByKey或者GroupByKey进行聚合,其实现过程中会自动解决数据倾斜的问。 4. 采用第三方工具 当数据倾斜问较严重时,可以采用第三方工具,如Spark的Tungsten、HyperLogLog等。这些工具可以对数据进行均衡分布,优化任务,并提高运行效率。 总结起来,在Spark数据倾斜调优中,我们可以通过手动调整shuffle分区数量、增加随机前缀或后缀、使用Spark SQL聚合函数、采用第三方工具等方法来解决问。但是,具体方法要根据不同场景灵活运用,选择合适的解决方案。同时,对于Spark应用程序的开发和调试,我们也应该加强对Spark内核的理解,减少数据倾斜问的出现,以提高应用程序的稳定性和运行效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值