训练赛3_J_Steps

Vasya在一个n×m的矩形场地上独自玩触地得分游戏,从初始位置出发,根据一系列给定的向量方向移动,直到不能再移动为止。任务是计算Vasya总共走了多少步。

Steps

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

One day Vasya went out for a walk in the yard but there weren’t any of his friends outside and he had no one to play touch and run. But the boy didn’t lose the high spirits and decided to play touch and run with himself. You may ask: “How did he do that?” The answer is simple.

Vasya noticed that the yard is a rectangular n × m field. The squares have coordinates (x, y) (1 ≤ x ≤ n, 1 ≤ y ≤ m), where x is the index of the row and y is the index of the column.

Initially Vasya stands in the square with coordinates (x**c, y**c). To play, he has got a list of k vectors (dx**i, dy**i) of non-zero length. The game goes like this. The boy considers all vectors in the order from 1 to k, and consecutively chooses each vector as the current one. After the boy has chosen a current vector, he makes the maximally possible number of valid steps in the vector’s direction (it is possible that he makes zero steps).

A step is defined as one movement from the square where the boy is standing now, in the direction of the current vector. That is, if Vasya is positioned in square (x, y), and the current vector is (dx, dy), one step moves Vasya to square (x + dx, y + dy). A step is considered valid, if the boy does not go out of the yard if he performs the step.

Vasya stepped on and on, on and on until he ran out of vectors in his list. Ha had been stepping for so long that he completely forgot how many steps he had made. Help the boy and count how many steps he had made.

Input

The first input line contains two integers n and m (1 ≤ n, m ≤ 109) — the yard’s sizes. The second line contains integers x**c and y**c — the initial square’s coordinates (1 ≤ x**c ≤ n, 1 ≤ y**c ≤ m).

The third line contains an integer k (1 ≤ k ≤ 104) — the number of vectors. Then follow k lines, each of them contains two integers dx**i and dy**i (|dx**i|, |dy**i| ≤ 109, |dx| + |dy| ≥ 1).

Output

Print the single number — the number of steps Vasya had made.

Please do not use the %lld specificator to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64dspecificator.

Examples

input

Copy

4 5
1 1
3
1 1
1 1
0 -2

output

Copy

4

input

Copy

10 10
1 2
1
-1 0

output

Copy

0

Note

In the first sample Vasya is initially positioned at square (1, 1) and makes 3 steps by the first vector (1, 1). So, he consecutively visits the squares (2, 2), (3, 3), (4, 4). Then he makes 0 steps by the second vector (1, 1). He makes 1 more step by the third vector (0,  - 2) and he ends up in square (4, 2). Overall, Vasya makes 4 steps.

In the second sample Vasya is initially positioned in square (1, 2) and makes 0 steps by vector ( - 1, 0), as the square with coordinates (0, 2) is located outside the yard.

题目大意

有一幅地图,地图的大小是n×mn \times mn×m(1,1)(1,1)(1,1)是起点,然后给一个初始的位置给你,再给个kkk个向量,表示接下来的步伐的大小与方向,每读取一个向量,就往那个方向走到不能走。然后读取下一个变量,继续走。最后输出所走的步数。

题目分析

模拟题,直接模拟就好。但是有几个重要的点要注意一下

  • 题目要求用I64d输出,这个要注意。
  • 注意向量中的正负问题,是用当前坐标除还是用地图边界减去当前坐标除
  • 注意坐标是从(1,1)(1,1)(1,1)开始。不能整除,坐标要剩下一点,所以要先减1再除。
  • 向量不用存。边读边加。

代码

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef struct{
  int x, y;
}node;
typedef long long ll;
const int inf = 0x3f3f3f3f;
int n, m, x, y, k;
ll f(node v){
  int a = inf, b = inf;
  if(v.x < 0)
    a = (x - 1) / abs(v.x);
  else if(v.x > 0)
    a = (n - x) / abs(v.x);
  if(v.y < 0)
    b = (y - 1) / abs(v.y);
  else if(v.y > 0)
    b = (m - y) / abs(v.y);
  int mn = min(a, b);
  x += mn * v.x; y += mn * v.y;
  return mn;
}
int main(int argc, char const *argv[]) {
  scanf("%d%d%d%d", &n, &m, &x, &y);
  scanf("%d", &k);
  ll ans = 0;
  for(int i = 0; i < k; i++){
    node t;
    scanf("%d%d", &t.x, &t.y);
    ans += f(t);
  }
  printf("%I64d\n", ans);
  return 0;
}

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值