训练赛3_J_Steps

Vasya在一个n×m的矩形场地上独自玩触地得分游戏,从初始位置出发,根据一系列给定的向量方向移动,直到不能再移动为止。任务是计算Vasya总共走了多少步。

Steps

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

One day Vasya went out for a walk in the yard but there weren’t any of his friends outside and he had no one to play touch and run. But the boy didn’t lose the high spirits and decided to play touch and run with himself. You may ask: “How did he do that?” The answer is simple.

Vasya noticed that the yard is a rectangular n × m field. The squares have coordinates (x, y) (1 ≤ x ≤ n, 1 ≤ y ≤ m), where x is the index of the row and y is the index of the column.

Initially Vasya stands in the square with coordinates (x**c, y**c). To play, he has got a list of k vectors (dx**i, dy**i) of non-zero length. The game goes like this. The boy considers all vectors in the order from 1 to k, and consecutively chooses each vector as the current one. After the boy has chosen a current vector, he makes the maximally possible number of valid steps in the vector’s direction (it is possible that he makes zero steps).

A step is defined as one movement from the square where the boy is standing now, in the direction of the current vector. That is, if Vasya is positioned in square (x, y), and the current vector is (dx, dy), one step moves Vasya to square (x + dx, y + dy). A step is considered valid, if the boy does not go out of the yard if he performs the step.

Vasya stepped on and on, on and on until he ran out of vectors in his list. Ha had been stepping for so long that he completely forgot how many steps he had made. Help the boy and count how many steps he had made.

Input

The first input line contains two integers n and m (1 ≤ n, m ≤ 109) — the yard’s sizes. The second line contains integers x**c and y**c — the initial square’s coordinates (1 ≤ x**c ≤ n, 1 ≤ y**c ≤ m).

The third line contains an integer k (1 ≤ k ≤ 104) — the number of vectors. Then follow k lines, each of them contains two integers dx**i and dy**i (|dx**i|, |dy**i| ≤ 109, |dx| + |dy| ≥ 1).

Output

Print the single number — the number of steps Vasya had made.

Please do not use the %lld specificator to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64dspecificator.

Examples

input

Copy

4 5
1 1
3
1 1
1 1
0 -2

output

Copy

4

input

Copy

10 10
1 2
1
-1 0

output

Copy

0

Note

In the first sample Vasya is initially positioned at square (1, 1) and makes 3 steps by the first vector (1, 1). So, he consecutively visits the squares (2, 2), (3, 3), (4, 4). Then he makes 0 steps by the second vector (1, 1). He makes 1 more step by the third vector (0,  - 2) and he ends up in square (4, 2). Overall, Vasya makes 4 steps.

In the second sample Vasya is initially positioned in square (1, 2) and makes 0 steps by vector ( - 1, 0), as the square with coordinates (0, 2) is located outside the yard.

题目大意

有一幅地图,地图的大小是n×mn \times mn×m(1,1)(1,1)(1,1)是起点,然后给一个初始的位置给你,再给个kkk个向量,表示接下来的步伐的大小与方向,每读取一个向量,就往那个方向走到不能走。然后读取下一个变量,继续走。最后输出所走的步数。

题目分析

模拟题,直接模拟就好。但是有几个重要的点要注意一下

  • 题目要求用I64d输出,这个要注意。
  • 注意向量中的正负问题,是用当前坐标除还是用地图边界减去当前坐标除
  • 注意坐标是从(1,1)(1,1)(1,1)开始。不能整除,坐标要剩下一点,所以要先减1再除。
  • 向量不用存。边读边加。

代码

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef struct{
  int x, y;
}node;
typedef long long ll;
const int inf = 0x3f3f3f3f;
int n, m, x, y, k;
ll f(node v){
  int a = inf, b = inf;
  if(v.x < 0)
    a = (x - 1) / abs(v.x);
  else if(v.x > 0)
    a = (n - x) / abs(v.x);
  if(v.y < 0)
    b = (y - 1) / abs(v.y);
  else if(v.y > 0)
    b = (m - y) / abs(v.y);
  int mn = min(a, b);
  x += mn * v.x; y += mn * v.y;
  return mn;
}
int main(int argc, char const *argv[]) {
  scanf("%d%d%d%d", &n, &m, &x, &y);
  scanf("%d", &k);
  ll ans = 0;
  for(int i = 0; i < k; i++){
    node t;
    scanf("%d%d", &t.x, &t.y);
    ans += f(t);
  }
  printf("%I64d\n", ans);
  return 0;
}

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值