代价函数和损失函数(Cost and Loss Functions)详解
1. 引言
在机器学习和深度学习领域,代价函数(Cost Function)和损失函数(Loss Function)是核心概念,它们决定了模型的优化方向。在训练过程中,我们希望找到一个最优的模型参数,使得预测误差最小,而这个优化过程正是通过最小化代价函数或损失函数来完成的。
在这篇文章中,我们将深入探讨代价函数和损失函数的概念、数学定义、常见类型、优化方法及其在实际应用中的重要性。
2. 代价函数和损失函数的概念
从概念上来说,损失函数(Loss Function)和代价函数(Cost Function)有细微的区别:
- 损失函数(Loss Function):用于衡量单个样本的预测误差,即单个数据点的误差大小。
- 代价函数(Cost Function):用于衡量整个数据集的平均误差,即所有样本的损失函数的平均值或总和。
从数学上看,假设有 m 个训练样本,每个样本的损失函数为 ,那么代价函数可以定义为: