【机器学习】机器学习的基本分类-无监督学习-K-Means聚类

K-Means 是一种基于划分的无监督学习算法,用于数据聚类任务,它通过迭代优化将数据分组为 k 个互斥的簇,使得每个簇内数据点的相似性最大化,而簇间的相似性最小化。它通过最小化簇内样本点到簇中心的距离平方和(即误差平方和,SSE)来完成聚类任务。


1. 算法原理

目标函数

K-Means 的目标是最小化以下目标函数:

J = \sum_{i=1}^k \sum_{x \in C_i} \|x - \mu_i\|^2

  • k:簇的数量。
  • C_i:第 i 个簇的集合。
  • \mu_i:第 i 个簇的中心(质心)。
  • \|x - \mu_i\|:样本点 x 到质心 \mu_i 的欧几
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值