BZOJ 2561 最小生成树 (最小割)

探讨在一个连通无向图中,如何通过调整边的数量,使特定边既能出现在最小生成树也能出现在最大生成树上。文章详细介绍了算法实现,包括输入输出格式、样例和数据范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

任重而道远

 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上?

Input

第一行包含用空格隔开的两个整数,分别为N和M;
接下来M行,每行包含三个正整数u,v和w表示图G存在一条边权为w的边(u,v)。
最后一行包含用空格隔开的三个整数,分别为u,v,和 L;
数据保证图中没有自环。

Output

输出一行一个整数表示最少需要删掉的边的数量。

Sample Input

3 2 3 2 1 1 2 3 1 2 2

Sample Output

1

Hint

对于20%的数据满足N ≤ 10,M ≤ 20,L ≤ 20;
对于50%的数据满足N ≤ 300,M ≤ 3000,L ≤ 200;
对于100%的数据满足N ≤ 20000,M ≤ 200000,L ≤ 20000。

AC代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;

const int oo = 1e9 + 7;
const int N = 2e4 + 4;
const int M = 2e5 + 5;
struct Node {
	int u, v, val;
	bool operator < (const Node &a) const {
		return val < a.val;
	}
}g[M];
struct Edge {
	int tov, nxt, val;
}e[M << 2];
int head[N], dis[N], vis[N];
int num = 1, n, m, src, sink, L;
long long sww;

void add_edge (int u, int v, int val) {
	e[++num] = (Edge) {v, head[u], val}, head[u] = num;
}

bool bfs () {
	memset (dis, 127 / 2, sizeof (dis));
	memset (vis, 0, sizeof (vis));
	queue <int> q;
	q.push (src), dis[src] = 0, vis[src] = 1;
	while (!q.empty ()) {
		int u = q.front ();
		q.pop ();
		for (int i = head[u]; i; i = e[i].nxt) {
			int v = e[i].tov;
			if (e[i].val && !vis[v]) {
				dis[v] = dis[u] + 1;
				vis[v] = 1;
				q.push (v);
			}
		}
	}
	return dis[sink] < dis[0];
}

int dfs (int u, int delta) {
	if (u == sink) return delta;
	int res = 0;
	for (int i = head[u]; i; i = e[i].nxt) {
		int v = e[i].tov;
		if (e[i].val && dis[v] == dis[u] + 1) {
			int d = dfs (v, min (delta, e[i].val));
			e[i].val -= d;
			e[i ^ 1].val += d;
			delta -= d;
			res += d;
		}
	}
	return res;
}

int main () {
	scanf ("%d%d", &n, &m);
	for (int i = 1; i <= m; i++) {
		int u, v, val;
		scanf ("%d%d%d", &u, &v, &val);
		g[i] = (Node) {u, v, val};
	}
	sort (g + 1, g + m + 1);
	scanf ("%d%d%d", &src, &sink, &L);
	for (int i = 1; i <= m; i++) {
		if (g[i].val >= L) break;
		int u = g[i].u, v = g[i].v;
		add_edge (u, v, 1), add_edge (v, u, 1);
	}
	while (bfs ()) sww += dfs (src, oo);
	num = 1, memset (head, 0, sizeof (head));
	for (int i = m; i >= 1; i--) {
		if (g[i].val <= L) break;
		int u = g[i].u, v = g[i].v;
		add_edge (u, v, 1), add_edge (v, u, 1);
	}
	while (bfs ()) sww += dfs (src, oo);
	printf ("%lld\n", sww);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值