树形dp--清洁机器人 nkoj3695

本文介绍了一个关于清洁机器人在有限燃油条件下,如何通过最优路径规划来完成所有教室清洁任务的问题。通过对给定图进行深度优先搜索并应用动态规划,计算出最小燃油消耗方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P3695清洁机器人
时间限制 : - MS   空间限制 : 65536 KB  

评测说明 : 时限1000ms


问题描述

NK中学有n间教室(编号1到n),通过n-1条双向道路相连,每条道路的长度可能不同。现在有k台清洁机器人位于s号教室,现在要安排它们去清洁所有教室。
机器人靠燃油驱动,一台机器人清洁一个教室的耗油1升。在道路上行走时,每单位距离耗油1L。
我们希望完成清洁作业消耗的总油量尽可能少。请你计算出这个总油量。
作业结束时,机器人可以停留在任何位置。


输入格式

第一行,三个整数n,s,k
接下来n-1行,每行三个整数a,b,c,表示教室a和教室b之间有条长度为c的道路相连。


输出格式

一行,一个整数,表示所求答案。


样例输入 1

3 1 1
1 2 1
1 3 1


样例输出 1

6


样例输入 2

3 1 2
1 2 1
1 3 1


样例输出 2

5


提示

样例1说明,机器人的活动线路为1->2->1->3,路上耗费3L燃油,清洁教室耗费3L


1<=n<=10000, 1<=s<=N, 1<=k<=10

1<=c<=1000000.


#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
struct line{
	long long from,to,len;
};
line edge[1000005];
long long last[100005],_next[1000005];
long long f[100005][15];
long long n,s,k,m=0;
void add_edge(long long x,long long y,long long len){
	m++;
	_next[m]=last[x];
	last[x]=m;
	edge[m].from=x;
	edge[m].to=y;
	edge[m].len=len;
}
void dp(long long u,long long fa){
	long long i,j,h,v,t;
	for(h=last[u];h;h=_next[h]){
		v=edge[h].to;
		if(v==fa)continue;
		dp(v,u);
		for(j=k;j>=0;j--){
			f[u][j]+=f[v][0]+2*edge[h].len;
			for(t=0;t<=j;t++){
				f[u][j]=min(f[u][j],f[v][t]+f[u][j-t]+t*edge[h].len);
			}
		}
	}
}
int main(){
	long long i,j;
	cin>>n>>s>>k;
	for(i=1;i<n;i++){
		long long a,b,c;
		scanf("%I64d%I64d%I64d",&a,&b,&c);
		add_edge(a,b,c);
		add_edge(b,a,c);
	}
	dp(s,0);
	cout<<f[s][k]+n;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值