YOLOv8改进 | 使用CVPR2025 MambaOut中的GatedCNNBlock改进C2f模块

本文介绍

为提升 YOLOv8 在目标检测任务中的特征表达能力,我们借鉴了 CVPR2025 MambaOut 提出的核心模块GatedCNNBlock。该模块是在移除 RNN-like 状态空间模型(SSM)后,仅保留高效的卷积门结构,通过门控机制提升跨层特征融合能力。与传统 Bottleneck 块相比,GatedCNNBlock 通过自适应选择性提取关键特征,增强了信息流在通道间的响应性。实验结果如下(本文通过VOC数据验证算法性能,epoch为100,batchsize为32,imagesize为640*640):

ModelmAP50-95mAP50run time (h)params (M)interence time (ms)
YOLOv80.5490.7601.0513.010.2+0.3(postprocess)
YOLO110.5530.7571.1422.590.2+0.3(postprocess)
YOLOv8_C2f-MambaOut0.5360.7531.1832.790.3+0.3(postprocess)

在这里插入图片描述

重要声明:本文改进后代码可能只是并不适用于我所使用的数据集,对于其他数据集可能存在有效性。

本文改进是为了降低最新研究进展至YOLO的代码迁移难度,从而为对最新研究感兴趣的同学提供参考。

代码迁移

重点内容

步骤一:迁移代码

ultralytics框架的模块代码主要放在ultralytics/nn文件夹下,此处为了与官方代码进行区分,可以新增一个extra_modules文件夹,然后将我们的代码添加进入。

具体代码如下:

import torch
import torch.nn as nn
from functools import partial
from timm.models.layers import DropPath, trunc_normal_

class GatedCNNBlock_BCHW(nn.Module):
    r""" Our implementation of Gated CNN Block: https://arxiv.org/pdf/1612.08083
    Args: 
        conv_ratio: control the number of channels to conduct depthwise convolution.
            Conduct convolution on partial channels can improve practical efficiency.
            The idea of partial channels is from ShuffleNet V2 (https://arxiv.org/abs/1807.11164) and 
            also used by InceptionNeXt (https://arxiv.org/abs/2303.16900) and FasterNet (https://arxiv.org/abs/2303.03667)
    """
    def __init__(self, dim, expansion_ratio=8/3, kernel_size=7, conv_ratio=1.0,
                 norm_layer=partial(nn.LayerNorm,eps=1e-6), 
                 act_layer=nn.SELU,
                 drop_path=0.,
                 **kwargs):
        super().__init__()
        self.norm = norm_layer(dim)
        hidden = int(expansion_ratio * dim)
        self.fc1 = nn.Linear(dim, hidden * 2)
        self.act = act_layer()
        conv_channels = int(conv_ratio * dim)
        self.split_indices = (hidden, hidden - conv_channels, conv_channels)
        self.conv = nn.Conv2d(conv_channels, conv_channels, kernel_size=kernel_size, padding=kernel_size//2, groups=conv_channels)
        # self.conv = nn.Sequential(
        #     nn.Conv2d(conv_channels, conv_channels, kernel_size=kernel_size, padding=kernel_size//2, groups=conv_channels),
        #     nn.Conv2d(conv_channels, conv_channels, kernel_size=1)
        # )
        self.fc2 = nn.Linear(hidden, dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x # [B, C, H, W]
        x = self.norm(x.permute(0, 2, 3, 1))
        g, i, c = torch.split(self.fc1(x), self.split_indices, dim=-1)
        c = c.permute(0, 3, 1, 2) # [B, H, W, C] -> [B, C, H, W]
        c = self.conv(c)
        c = c.permute(0, 2, 3, 1) # [B, C, H, W] -> [B, H, W, C]
        x = self.fc2(self.act(g) * torch.cat((i, c), dim=-1))
        x = self.drop_path(x)
        return x.permute(0, 3, 1, 2) + shortcut # x.permute(0, 3, 1, 2): [B, H, W, C] -> [B, C, H, W]

步骤二:创建模块并导入

此时需要在当前目录新建一个block.py文件用以统一管理自定义的C2f模块(当然也可以直接在ultralytics/nn/modules/block.py中直接添加)。内容如下:

import torch.nn as nn
from ..modules import C2f
from .mambaout import GatedCNNBlock_BCHW

class C2f_MambaOut(C2f):
    def __init__(self, c1, c2, n = 1, shortcut = False, g = 1, e = 0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(GatedCNNBlock_BCHW(self.c) for _ in range(n))

添加完成之后需要新增一个__init__.py文件,将添加的模块导入到__init__.py文件中,这样在调用的时候就可以直接使用from extra_modules import *__init__.py文件需要撰写以下内容:

from .block import C2f_MambaOut

具体目录结构如下图所示:

在这里插入图片描述

步骤三:修改tasks.py文件

首先在tasks.py文件中添加以下内容:

from ultralytics.nn.extra_modules import *

然后找到parse_model()函数,在函数查找如下内容:

        if m in base_modules:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)

使用较老ultralytics版本的同学,此处可能不是base_modules,而是相关的模块的字典集合,此时直接添加到集合即可;若不是就找到base_modules所指向的集合进行添加,添加方式如下:

    base_modules = frozenset(
        {
            Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck,
            SPP, SPPF, C2fPSA, C2PSA, DWConv, Focus, BottleneckCSP, C1, C2, C2f, C3k2,
            RepNCSPELAN4, ELAN1, ADown, AConv, SPPELAN, C2fAttn, C3, C3TR, C3Ghost,
            torch.nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, PSA, SCDown, C2fCIB,
            A2C2f,
            # 自定义模块
            C2f_MambaOut,
        }
    )

其次找到parse_model()函数,在函数查找如下内容:

            if m in repeat_modules:
                args.insert(2, n)  # number of repeats
                n = 1

base_modules同理,具体添加方式如下:

    repeat_modules = frozenset(  # modules with 'repeat' arguments
        {
            BottleneckCSP, C1, C2, C2f, C3k2, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3,
            C2fPSA, C2fCIB, C2PSA, A2C2f,
            # 自定义模块
            C2f_MambaOut,
        }
    )

步骤四:修改配置文件

在相应位置添加如下代码即可。

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

# Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] # YOLOv8n summary: 129 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPS
  s: [0.33, 0.50, 1024] # YOLOv8s summary: 129 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPS
  m: [0.67, 0.75, 768] # YOLOv8m summary: 169 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPS
  l: [1.00, 1.00, 512] # YOLOv8l summary: 209 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPS
  x: [1.00, 1.25, 512] # YOLOv8x summary: 209 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPS

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f_MambaOut, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 3, C2f_MambaOut, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 9, C2f_MambaOut, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f_MambaOut, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2f, [1024]] # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

### 改进YOLOv8中的C2F-SWC组件 为了提升YOLOv8的目标检测性能,特别是在改进C2F-SWC(Cross-Stage Feature Sharing with Shifted Window Convolution)方面,可以从多个角度进行优化。以下是几种可能的方法: #### 1. 引入Shift Operator 通过引入移位算子来增强特征提取能力,确保卷积神经网络能够在稀疏机制的帮助下捕捉远程依赖关系,从而提高模型的准确性并减少计算需求[^3]。 ```python def shift_operator(feature_map): shifted_feature_map = torch.roll(feature_map, shifts=1, dims=-1) return shifted_feature_map ``` #### 2. 利用Wavelet Feature Upgrade (WFEN) 采用来自ACMMM2024 WFEN的技术,利用离散小波变换(DWT)对输入图像进行多尺度分解,进而获得更丰富的空间频率信息,有助于改善细粒度物体识别的效果[^1]。 ```python import pywt def wavelet_feature_upgrade(image_tensor): coeffs = pywt.dwt2(image_tensor.numpy(), 'haar') ll, (lh, hl, hh) = coeffs upgraded_features = np.stack([ll, lh, hl, hh], axis=0) return torch.from_numpy(upgraded_features).float() ``` #### 3. 应用Mixed Aggregation Network (MANet) 借鉴Hyper-YOLO中的混合聚合网络结构,在不同阶段之间共享权重的同时增加跨层连接,使得低级特征能够更好地传递到高级表示中去,进一步加强了上下文理解力。 ```python class MANet(nn.Module): def __init__(self, in_channels, out_channels): super(MANet, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels//2, kernel_size=1) self.dwconv = nn.Conv2d(out_channels//2, out_channels//2, groups=out_channels//2, stride=1, padding=1) def forward(self, x): identity = x x = F.relu(self.conv1(x)) x = self.dwconv(x) output = torch.cat((identity, x), dim=1) return output ``` #### 4. 使用Faster-Block替代传统残差模块 基于FasterNet CVPR2023提出的快速构建单元——Faster-blocks替换原有的Residual Blocks,可以在几乎不影响精度的情况下大幅加速推理过程,并且减少了参数量和浮点运算次数(FLOPs)。 ```python from functools import partial faster_block = partial( FasterBlock, expansion_factor=6., drop_rate=.2, se_ratio=None, norm_layer='batch_norm', act_layer='silu' ) ``` #### 5. 结合Convolutional GLU激活函数 最后,考虑将TransNeXt CVPR2024介绍的卷积门控线性单元(ConvGLU)应用于激活层位置处,这种新型激活方式不仅保留了ReLU的优点还具备更强表达能力和更快收敛速度。 ```python class ConvGLU(nn.Module): """Implementation of the Convolutional Gated Linear Unit.""" def __init__(self, channels_in, channels_out): super().__init__() self.linear_transform = nn.Linear(channels_in, channels_out * 2) self.sigmoid = nn.Sigmoid() def forward(self, inputs): gate_values = self.linear_transform(inputs) gates_x, gates_y = gate_values.chunk(2, dim=-1) activation_fn = lambda y: y gated_activation = activation_fn(gates_x) * self.sigmoid(gates_y) return gated_activation ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NicKernel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值