The sum problem
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 31416 Accepted Submission(s): 9409
Problem Description
Given a sequence 1,2,3,…N, your job is to calculate all the possible sub-sequences that the sum of the sub-sequence is M.
Input
Input contains multiple test cases. each case contains two integers N, M( 1 <= N, M <= 1000000000).input ends with N = M = 0.
Output
For each test case, print all the possible sub-sequence that its sum is M.The format is show in the sample below.print a blank line after each test case.
Sample Input
20 10
50 30
0 0
Sample Output
[1,4]
[10,10]
[4,8]
[6,9]
[9,11]
[30,30]
这道题的答案可以根据等差数列的性质得到:
最大的区间长度 :
由1+2+3+⋯+2m>m\large \sqrt{1+2+3+\cdots+2m}> m1+2+3+⋯+2m>m
lmax=2×m\large l_{max} =\sqrt{2\times m}lmax=2×m
由等差数列
Sn=(a1+an)×n2\Large S_n = \frac{(a_1 + a_n)\times n}{2}Sn=2(a1+an)×n
Sn=(a1+a1+d∗(n−1))×n2\Large S_n = \frac{(a_1 + a_1+d*(n-1))\times n}{2}Sn=2(a1+a1+d∗(n−1))×n
Sn=(2∗a1+d∗(n−1))×n2\Large S_n = \frac{(2*a_1+d*(n-1))\times n}{2}Sn=2(2∗a1+d∗(n−1))×n
又因为d=1,故:
Sn=(2∗a1+n−1)×n2\Large S_n = \frac{(2*a_1+n-1)\times n}{2}Sn=2(2∗a1+n−1)×n
a1=Snn−n−12\Large a_1 = \frac{S_n}{n}-\frac{n-1}{2}a1=nSn−2n−1
那么
an=a1+n−1\Large a_n = a_1 + n-1an=a1+n−1
对于这一道题:m就相当于Sn,
假设  m=(ai+aj)×(j−i+1)2\;\Large m = \frac{(a_i+a_j)\times (j-i+1)}{2}m=2(ai+aj)×(j−i+1)
我们可以枚举aia_iai
因为我们知道最大的区间长度为lmax=2×m\large l_{max} =\sqrt{2\times m}lmax=2×m
所以枚举1到l1到l1到l的所有值
那么根据上边的可以得到
a1=ml−l−12\Large a_1 = \frac{m}{l}-\frac{l-1}{2}a1=lm−2l−1
an=a1+n−1\Large a_n = a_1 + n-1an=a1+n−1
只要(a1+a2)∗l2==m(a_1+a_2)*\frac{l}{2} == m(a1+a2)∗2l==m
就好了
代码很短,就这几行:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,m;
while(~scanf("%d %d",&n,&m)&&(n|m))
{
int l=sqrt(2*m);//最大区间长度为 L
int a1,an;
for(int k=l;k>0;--k)//区间长度为k
{
a1 = m/k-(k-1)/2;
an = a1 + k-1;
if((a1 + an )*k/2 == m)
printf("[%d,%d]\n",a1,an);
}
printf("\n");
}
return 0;
}
408

被折叠的 条评论
为什么被折叠?



