HDU 2058 The sum problem——————数学

The sum problem

Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 31416 Accepted Submission(s): 9409


Problem Description

Given a sequence 1,2,3,…N, your job is to calculate all the possible sub-sequences that the sum of the sub-sequence is M.


Input

Input contains multiple test cases. each case contains two integers N, M( 1 <= N, M <= 1000000000).input ends with N = M = 0.

Output

For each test case, print all the possible sub-sequence that its sum is M.The format is show in the sample below.print a blank line after each test case.


Sample Input

20 10
50 30
0 0

Sample Output

[1,4]
[10,10]

[4,8]
[6,9]
[9,11]
[30,30]


这道题的答案可以根据等差数列的性质得到:
最大的区间长度 :
1+2+3+⋯+2m&gt;m\large \sqrt{1+2+3+\cdots+2m}&gt; m1+2+3++2m>m
lmax=2×m\large l_{max} =\sqrt{2\times m}lmax=2×m

由等差数列
Sn=(a1+an)×n2\Large S_n = \frac{(a_1 + a_n)\times n}{2}Sn=2(a1+an)×n
Sn=(a1+a1+d∗(n−1))×n2\Large S_n = \frac{(a_1 + a_1+d*(n-1))\times n}{2}Sn=2(a1+a1+d(n1))×n
Sn=(2∗a1+d∗(n−1))×n2\Large S_n = \frac{(2*a_1+d*(n-1))\times n}{2}Sn=2(2a1+d(n1))×n

又因为d=1,故:
Sn=(2∗a1+n−1)×n2\Large S_n = \frac{(2*a_1+n-1)\times n}{2}Sn=2(2a1+n1)×n
a1=Snn−n−12\Large a_1 = \frac{S_n}{n}-\frac{n-1}{2}a1=nSn2n1
那么
an=a1+n−1\Large a_n = a_1 + n-1an=a1+n1

对于这一道题:m就相当于Sn,
假设&ThickSpace;m=(ai+aj)×(j−i+1)2\;\Large m = \frac{(a_i+a_j)\times (j-i+1)}{2}m=2(ai+aj)×(ji+1)
我们可以枚举aia_iai
因为我们知道最大的区间长度为lmax=2×m\large l_{max} =\sqrt{2\times m}lmax=2×m
所以枚举1到l1到l1l的所有值
那么根据上边的可以得到
a1=ml−l−12\Large a_1 = \frac{m}{l}-\frac{l-1}{2}a1=lm2l1
an=a1+n−1\Large a_n = a_1 + n-1an=a1+n1
只要(a1+a2)∗l2==m(a_1+a_2)*\frac{l}{2} == m(a1+a2)2l==m
就好了

代码很短,就这几行:


#include<bits/stdc++.h>
using namespace std;
int main()
{
        int n,m;
        while(~scanf("%d %d",&n,&m)&&(n|m))
        {
                int l=sqrt(2*m);//最大区间长度为 L
                int a1,an;
                for(int k=l;k>0;--k)//区间长度为k
                {
                        a1 = m/k-(k-1)/2;
                        an = a1 + k-1;
                        if((a1 + an )*k/2 == m)
                                printf("[%d,%d]\n",a1,an);
                }
                printf("\n");
        }
        return 0;
}

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值