POJ 1207 The 3n + 1 problem

本文探讨了3n+1问题,一个未解决的数学难题,由L.Collatz在1937年提出。文章详细介绍了问题的算法流程,并通过两个不同的代码实现展示了如何计算任意整数范围内该问题的最大周期长度。
The 3n + 1 problem
 
Time Limit: 1000MS Memory Limit: 10000K

Description

    Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs. Consider the following algorithm:
 
 		1. 		 input n
 
 		2. 		 print n
 
 		3. 		 if n = 1 then STOP
 
 		4. 		 		 if n is odd then   n <-- 3n+1
 
 		5. 		 		 else   n <-- n/2
 
 		6. 		 GOTO 2
 
    Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
    It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)
     Given an input n, it is possible to determine the number of numbers printed before the 1 is printed. For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.
For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 10,000 and greater than 0.
You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

Output

For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

Sample Input

1 10
100 200
201 210
900 1000

Sample Output

1 10 20
100 200 125
201 210 89
900 1000 174

【题目背景】
  3n+1问题是一个简单有趣而又没有解决的数学问题。这个问题是由L. Collatz在1937年提出的。克拉兹问题(Collatz problem)也被叫做hailstone问题、3n+1问题、Hasse算法问题、Kakutani算法问题、Thwaites猜想或者Ulam问题。
  问题如下:
    (1)输入一个正整数n;
    (2)如果n=1则结束;
    (3)如果n是奇数,则n变为3n+1,否则n变为n/2;
    (4)转入第(2)步。
  克拉兹问题的特殊之处在于:尽管很容易将这个问题讲清楚,但直到今天仍不能保证这个问题的算法对所有可能的输入都有效——即至今没有人证明对所有的正整数该过程都终止。

【题目要求】
  对于[i,j]之内的数,输出最大的歩数。
【提示】
   1、注意i,j的大小,如果 i>j 则计算的时候要交换一下,输出按原来的顺序
   2、如果i,j的值比较大,应该注意溢出
【代码---直接暴力(不考虑提示2)】
 1 /*===========================================================================*\
 2 * POJ 1207 The 3n + 1 problem
 3 * @author CocoonFan
 4 * @date 3/2/13
 5 \*===========================================================================*/
 6 #include<iostream>
 7 
 8 using namespace std;
 9 
10 int steps(int n);
11 
12 int main()
13 {
14     int i,j,n,k;
15     int i1,j1;
16 
17     while(cin >> i >> j){
18         int max = 0;
19         i1 = i;
20         j1 = j;
21         if(i>j){
22             int t = i;i = j;j = t;
23         }
24 
25         max = steps(i1);
26         for(k = i+1; k <= j; ++k){
27             if(max < steps(k)) max = steps(k);
28         }
29 
30         cout << i1 << " " << j1 << " " << max << endl;
31     }
32 
33 
34     return 0;
35 }
36 
37 int steps(int n)
38 {
39     int count = 1;
40     while(n != 1){
41         if(n%2){   //[3(2k+1)+1]/2 = 3k +2  /// ---- k = n/2
42             n = n/2*3 +2;
43             count += 2;
44         } else {
45             n /= 2;
46             count++;
47         }
48     }
49     return count;
50 }

 【记忆优化搜索】

 1 /*============================================================================*\
 2 * POJ 1207 The 3n + 1 problem
 3 * @author 王小迪
 4 * @blog http://blog.sina.com.cn/s/blog_ac43e9c301017cgf.html
 5 * @date 3/2/13
 6 \*============================================================================*/
 7 
 8 
 9 #include <iostream>
10 #include <string.h>
11 #include <stdio.h>
12 using namespace std;
13 
14 const int maxn = 1000010;
15 int ans[maxn];
16 
17 int dfs(__int64 i){
18     if(i >= maxn){
19         if(i%2==0)
20             return dfs(i/2)+1;
21         else
22             return dfs(i*3+1)+1;
23     }
24     else
25     {
26         if(ans[i]!=-1)
27             return ans[i];
28         if(i%2==0)
29             return ans[i]=dfs(i/2)+1;
30         else
31             return ans[i]=dfs(i*3+1)+1;
32     }
33 }
34 int main()
35 {
36     int  n,m;
37 
38     while(cin>>n>>m)
39     {
40         bool flag=0;
41         if(n>m)
42         {
43             flag=1;
44             int temp=n;
45             n=m;
46             m=temp;
47         }
48         memset(ans,-1,sizeof(ans));//赋初值
49         ans[1] = 1;
50         int max=0;
51         for(int  i = n;i<=m;i++)
52         {
53             if(dfs(i)>max)
54             max=dfs(i);
55 
56         }
57         if(flag)
58             printf("%d %d %d\n",m,n,max);
59         else
60             printf("%d %d %d\n",n,m,max);
61         }
62 
63         return 0;
64 }

  

转载于:https://www.cnblogs.com/CocoonFan/archive/2013/03/02/2940336.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值