这场比赛做出了2道题,第三道因为没有输入文件结束,导致一直超时。。。。。。。非常非常伤感
a题,我方法比较的笨,输入好再排序
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <map>
#include <vector>
#include <set>
#include <stack>
#include <queue>
using namespace std;
#define N 300000
#define Dbag printf("haha\n");
struct node
{
int h,m;
}a[N];
int cmp(node a, node b)
{
if(a.h!=b.h)
return a.h<b.h;
else
return a.m<b.m;
}
int main()
{
int n;
while(~scanf("%d", &n))
{
for(int i = 0; i < n; i++)
scanf("%d%d", &a[i].h, &a[i].m);
sort(a, a+n, cmp);
int ans = 0;
for(int i = 0; i < n-1; i++)
{
int cnt = 0;
if(a[i].h==a[i+1].h&&a[i].m==a[i+1].m)
{
cnt++;
int j = i+1;
while(j<n-1)
{
if(a[j].h==a[j+1].h&&a[j].m==a[j+1].m)
{
j++;cnt++;
}
else
break;
}
i = j;
ans = max(ans,cnt);
}
}
printf("%d\n",ans+1);
}
return 0;
}
B题
不要被他的样例输出误导,题目说了,不要求最小交换次数,我只要按着1,2,3,4,5。。。。n直接换,最多s-1次
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <map>
#include <vector>
#include <set>
#include <stack>
#include <queue>
using namespace std;
#define N 300
#define Dbag printf("haha\n");
int data[N][N], order[N][N];
int ans[N][4];
int main()
{
int n;
while(~scanf("%d",&n))
{
int c[N];
for(int i = 1; i <= n; i++)
scanf("%d", &c[i]);
int cnt = 0, oprea = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= c[i]; j++)
{
scanf("%d",&data[i][j]);
order[i][j] = ++cnt;
}
for(int i = 1; i <= n; i++)
for(int j = 1; j <= c[i]; j++)
{
if(data[i][j]!=order[i][j])
{
int flag = 0;
for(int k = i; k <= n; k++)
{
for(int l = 1; l <= c[k]; l++)
{
if(data[k][l]==order[i][j])
{
ans[oprea][0]=i;ans[oprea][1]=j;
ans[oprea][2]=k;ans[oprea++][3]=l;
int temp = data[k][l];
data[k][l]=data[i][j];
data[i][j]=temp; flag =1;
break;
}
}
if(flag)
break;
}
}
}
printf("%d\n", oprea);
for(int i = 0; i < oprea; i++)
printf("%d %d %d %d\n", ans[i][0],ans[i][1],ans[i][2],ans[i][3]);
}
return 0;
}
C题的话我先线性筛1e6的素数, 然后建立树状数组;
枚举l的时候从k开始,并且如果a---b之间的素数比k小的话,直接输出-1;
l的话,二分查找,行了,我的优化就这么多了,后边交了下300多ms,还行,不多说,直接上代码
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <stack>
#include <bitset>
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <string>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <ctime>
using namespace std;
#define N 1000001
bool isp[N];
int lp;
long long prime[N];
void gao()
{
memset(isp,true,sizeof(isp));
isp[0]=isp[1]=false;
lp=0;
for(long long i = 2; i < N; i++)
{
if(isp[i])
prime[lp++]=i;
for(long long j = 0; j<lp&&prime[j]*i<N;j++)
{
isp[prime[j]*i]=false;
if(i%prime[j]==0)
break;
}
}
}
int c[N];
int lowbit(int x) //求某节点的2^k
{
return (-x)&x;
}
//在树状数组中,将id处的元素+v,n为数组边界
void update(int id, int v, int n)
{
int cur = id;
while(cur<=n)
{
c[cur] += v;
cur += lowbit(cur);//为cur节点的父节点
}
}
//求出a[1]到a[id]的和
int querysum(int id)
{
int ret = 0;
int cur = id;
while(cur > 0)
{
ret += c[cur];
cur -= lowbit(cur); //即求cur节点的前一颗子树
}
return ret;
}
void build()
{
memset(c,0,sizeof(c));
for(int i = 0; i < N; i++)
if(isp[i])
update(i, 1, N);
}
int main()
{
gao();
build();
int a, b, k;
while(~scanf("%d%d%d", &a, &b, &k))
{
int l, flag;
if(querysum(b)-querysum(a-1)<k)
{
printf("-1\n");
continue;
}
int left = k, right = b-a+1;
while(left<right)
{
int l = (left+right)>>1;
flag = 1;
int x;
for(x = a; x <= b-l+1; x++)
{
if(querysum(x+l-1)-querysum(x-1)<k)
{
flag = 0;
break;
}
else
{
while(!isp[x])
x++;
}
}
if(flag)
right = l;
else
left = l+1;
}
flag = 1;
int x;
for(x = a; x <= b-right+1; x++)
{
if(querysum(x+right-1)-querysum(x-1)<k)
{
flag = 0;
break;
}
else
{
while(!isp[x])
x++;
}
if(flag)
break;
}
if(flag)
printf("%d\n", right);
else
printf("-1\n");
}
}