堆的代码实现

堆作为完全二叉树的一个特例,具有以下特性。

‧ 最底层节点靠左填充,其他层的节点都被填满。

‧ 二叉树的根节点称为“堆顶”,将底层最靠右的节点称为“堆底”。

‧ 对于大顶堆(小顶堆),堆顶元素(根节点)的值是最大(最小)的。

package algorithm;

import java.util.ArrayList;


public class Heap {
    private final HeapType mHeapType;
    private ArrayList<Integer> mHeaps = new ArrayList<>();

    public enum HeapType {
        LARGE_ROOT_HEAP,
        SMALL_ROOT_HEAP
    }

    public Heap(HeapType type) {
        this.mHeapType = type;
    }

    /**
     * 初始化堆
     *
     * @param nums 无序数组
     */
    public void heapify(int... nums) {
        for (int num : nums) {
            mHeaps.add(num);
        }
        int p = parent(mHeaps.size() - 1);
        for (int i = p; i >= 0; i--) {
            heapifyDown(i);
        }
    }

    /**
     * 往堆中插入元素
     *
     * @param num 元素的值
     */
    public void push(int num) {
        mHeaps.add(num);
        heapifyUp(mHeaps.size() - 1);
    }

    /**
     * 获取堆顶元素
     *
     * @return 堆顶元素
     */
    public int top() {
        if (mHeaps.isEmpty()) {
            throw new IllegalStateException("can't get top node from an empty Heap!");
        }
        return mHeaps.get(0);
    }

    /**
     * 弹出堆顶元素
     *
     * @return 堆顶元素
     */
    public int pop() {
        if (mHeaps.isEmpty()) {
            throw new IllegalStateException("can't pop a node from an empty Heap!");
        }
        swap(0, mHeaps.size() - 1);
        int remove = mHeaps.remove(mHeaps.size() - 1);
        heapifyDown(0);
        return remove;
    }

    /**
     * 返回堆的大小
     *
     * @return 堆的大小
     */
    public int size() {
        return mHeaps.size();
    }

    private void heapifyUp(int i) {
        while (true) {
            int p = parent(i);
            if (p < 0 || mHeaps.get(p) >= mHeaps.get(i)) {
                break;
            }
            swap(p, i);
            i = p;
        }

    }

    private int parent(int i) {
        return (i - 1) / 2;
    }

    private void heapifyDown(int i) {
        int size = mHeaps.size();
        while (true) {
            int curIndex = i;
            int leftNodeIndex = left(i);
            int rightNodeIndex = right(i);
            /**
             * if (leftNodeIndex < size && mHeaps.get(leftNodeIndex) > mHeaps.get(i)) {...}
             * 这是一个容易忽视的地方,左值比较结束后curIndex已更新,不能通过mHeaps.get(i)来获取maxIndex对应的值
             */
            if (mHeapType == HeapType.LARGE_ROOT_HEAP) {
                if (leftNodeIndex < size && mHeaps.get(leftNodeIndex) > mHeaps.get(curIndex)) {
                    curIndex = leftNodeIndex;
                }
                if (rightNodeIndex < size && mHeaps.get(rightNodeIndex) > mHeaps.get(curIndex)) {
                    curIndex = rightNodeIndex;
                }
            } else {
                if (leftNodeIndex < size && mHeaps.get(leftNodeIndex) < mHeaps.get(curIndex)) {
                    curIndex = leftNodeIndex;
                }
                if (rightNodeIndex < size && mHeaps.get(rightNodeIndex) < mHeaps.get(curIndex)) {
                    curIndex = rightNodeIndex;
                }
            }
            if (curIndex == i) {
                break;
            }
            swap(i, curIndex);
            i = curIndex;
        }
    }

    private void swap(int i, int j) {
        int temp = mHeaps.get(i);
        mHeaps.set(i, mHeaps.get(j));
        mHeaps.set(j, temp);
    }

    private int right(int i) {
        return 2 * i + 2;
    }

    private int left(int i) {
        return 2 * i + 1;
    }

    public static void main(String[] args) {
        Heap heap = new Heap(HeapType.SMALL_ROOT_HEAP);
        heap.heapify(6, 3, 9, 21, 32, 24, 16, 78, 92);
        int size = heap.size();
        for (int i = 0; i < size; i++) {
            int pop = heap.pop();
            System.out.println(pop);
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值