数据结构与算法——堆排序

本文介绍了堆排序算法,它是利用堆这种近似完全二叉树的数据结构设计的排序算法,分为大顶堆和小顶堆,平均时间复杂度为 Ο(nlogn)。还阐述了堆排序的步骤,包括创建最大堆和进行堆排序循环,最后提及了算法实现。

原文链接:https://jiang-hao.com/articles/2020/algorithms-algorithms-heap-sort.html

算法介绍

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
  2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

堆排序的平均时间复杂度为 Ο(nlogn)。

通常堆是通过一维数组来实现的。在数组起始位置为0的情形中:

  • 父节点i的左子节点在位置[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8KrqGOd1-1608382007509)(https://wikimedia.org/api/rest_v1/media/math/render/svg/3bff8f7d580269fe6c1e35648032bf2b93354088)];
  • 父节点i的右子节点在位置[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BA6P27HJ-1608382007512)(https://wikimedia.org/api/rest_v1/media/math/render/svg/e14787fdbf6c5580fcd2cf9f63c21dbeb8d82f5e)];
  • 子节点i的父节点在位置[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XdeaMqve-1608382007513)(https://wikimedia.org/api/rest_v1/media/math/render/svg/f38b28cfa0a788a6d767061ab7481da190b339b6)];

在堆的数据结构中,堆中的最大值总是位于根节点(在优先队列中使用堆的话堆中的最小值位于根节点)。堆中定义以下几种操作:

  • 最大堆调整(Max Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点
  • 创建最大堆(Build Max Heap):将堆中的所有数据重新排序
  • 堆排序(HeapSort):移除位在第一个数据的根节点,并做最大堆调整的递归运算

算法步骤

首先第一步和第二步,创建堆,这里我们用最大堆;创建过程中,保证调整堆的特性。

从最后一个分支的节点开始从右往左,从下至上进行调整为最大堆。

img

现在得到的最大堆的存储结构如下:

img

初始堆创建完成。

接着,最后一步,堆排序,进行(n-1)次循环。

img

持续整个过程直至最后一个元素为止。

这个迭代持续直至最后一个元素即完成堆排序步骤。

算法实现

public class HeapSort {
    private int[] arr;
    public HeapSort(int[] arr) {
        this.arr = arr;
    }

    /**
     * 堆排序的主要入口方法,共两步。
     */
    public void sort() {
        /*
         *  第一步:将数组堆化
         *  beginIndex = 第一个非叶子节点。
         *  从第一个非叶子节点开始即可。无需从最后一个叶子节点开始。
         *  叶子节点可以看作已符合堆要求的节点,根节点就是它自己且自己以下值为最大。
         */
        int len = arr.length - 1;
        int beginIndex = (arr.length >> 1)- 1;
        for (int i = beginIndex; i >= 0; i--)
            maxHeapify(i, len);
        /*
         * 第二步:对堆化数据排序
         * 每次都是移出最顶层的根节点A[0],与最尾部节点位置调换,同时遍历长度 - 1。
         * 然后从新整理被换到根节点的末尾元素,使其符合堆的特性。
         * 直至未排序的堆长度为 0。
         */
        for (int i = len; i > 0; i--) {
            swap(0, i);
            maxHeapify(0, i - 1);
        }
    }

    private void swap(int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    /**
     * 调整索引为 index 处的数据,使其符合堆的特性。
     *
     * @param index 需要堆化处理的数据的索引
     * @param len 未排序的堆(数组)的长度
     */
    private void maxHeapify(int index, int len) {
        int li = (index << 1) + 1; // 左子节点索引
        int ri = li + 1;           // 右子节点索引
        int cMax = li;             // 子节点值最大索引,默认左子节点。
        if (li > len) return;      // 左子节点索引超出计算范围,直接返回。
        if (ri <= len && arr[ri] > arr[li]) // 先判断左右子节点,哪个较大。
            cMax = ri;
        if (arr[cMax] > arr[index]) {
            swap(cMax, index);      // 如果父节点被子节点调换,
            maxHeapify(cMax, len);  // 则需要继续判断换下后的父节点是否符合堆的特性。
        }
    }

    /**
     * 测试用例
     *
     * 输出:
     * [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9]
     */
    public static void main(String[] args) {
        int[] arr = new int[] {3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6};
        new HeapSort(arr).sort();
        System.out.println(Arrays.toString(arr));
    }
}
### 堆排序算法详解 堆排序是一种基于比较的高效排序算法,其核心思想是利用堆这种数据结构来完成排序操作。堆可以被看作是一棵完全二叉树,并且满足堆积性质:对于最大堆而言,任意节点的关键字都不小于其子节点的关键字;而对于最小堆,则相反。 #### 一、基本概念 堆排序分为两种主要形式——最大堆和最小堆。在最大堆中,父节点始终大于等于其子节点[^4]。因此,在一个数组表示的最大堆中,第一个元素总是当前集合中的最大值。同样地,在最小堆中,父节点始终小于等于其子节点。 #### 二、主要过程 堆排序的过程主要包括以下几个方面: 1. **建堆** 将输入的数据构建成一个初始堆(通常是从最后一个非叶子节点向上逐层调整)。这一阶段的目标是使整个数据集符合堆定义的要求。 2. **堆调整** 当移除堆顶元素后,需要重新调整剩下的部分以保持堆特性不变。这一步骤称为“下沉”,即将新的根节点其较大的孩子交换位置直到恢复堆属性为止[^3]。 #### 三、特点分析 - 时间复杂度稳定为 O(n log n),无论最好情况还是最坏情况下都适用; - 是一种原地排序方法,不需要额外存储空间; - 不稳定性:由于可能涉及多次覆盖写入操作,所以它不是稳定的排序方式[^2]。 #### 四、C代码实现示例 以下是使用 C 编程语言编写的简单版本的堆排序程序: ```c #include <stdio.h> // 调整堆函数 void heapify(int arr[], int n, int i){ int largest = i; // 初始最大为根节点 int l = 2*i + 1; // 左子节点 int r = 2*i + 2; // 右子节点 if (l < n && arr[l] > arr[largest]) largest = l; if (r < n && arr[r] > arr[largest]) largest = r; if(largest !=i ){ swap(&arr[i], &arr[largest]); heapify(arr,n,largest); } } // 主要堆排序逻辑 void heapsort(int arr[],int n){ for(int i=n/2 -1;i>=0;i--){ heapify(arr,n,i); } for(int i= n-1 ;i>0;i--){ swap(&arr[0],&arr[i]); heapify(arr,i,0); } } ``` 上述代码展示了如何通过递归调用来维护堆结构并最终完成排序任务[^1]。 --- ### Java 实现示例 如果考虑另一种主流编程语言如 Java 的话,也可以按照相似思路编写如下所示的堆排序类: ```java public class HeapSort { public void sort(int[] array) { int length = array.length; // 构造初始堆 for (int i = length / 2 - 1; i >= 0; i--) { adjustHeap(array, i, length); } // 进行n-1次循环处理 for (int j = length - 1; j > 0; j--) { // 把当前最大的放到最后面去 swap(array, 0, j); // 对前面j-1个数再次进行堆 adjustHeap(array, 0, j); } } private static void adjustHeap(int[] array,int index ,int size){ int temp=array[index]; for(int k=index*2+1;k<size;k=k*2+1){ if(k+1<size&&array[k]<array[k+1]){ k++; } if(temp>=array[k])break; array[index]=array[k]; index=k; } array[index]=temp; } private static void swap(int[] data, int a, int b){ int tmp=data[a]; data[a]=data[b]; data[b]=tmp; } } ``` 这段代码实现了完整的堆排序流程,包括初始堆以及后续每次删除后的重排工作。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值