题目:
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is
not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3 1 2 10 0 0 0
Sample Output
2 5
#include<iostream>
using namespace std;int main(){
int A,B,N,i,ans,a[49]={1,1};
while(cin>>A>>B>>N&&A||B||N){
for(i=2;i<49;i++)
{
a[i]=(A*a[i-1]+B*a[i-2])%7;
}
ans=a[(N-1)%49];
cout<<ans<<endl;
}
return 0;
}