SYS_CONTEXT(c1,c2)

本文详细介绍了Oracle数据库中的SYS_CONTEXT函数,该函数用于获取当前会话的环境信息,如终端、语言设置、用户身份等。文章提供了函数的语法、功能、参数及返回值,并通过实例展示了如何查询多种环境变量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【语法】SYS_CONTEXT(c1,c2)
【功能】返回系统c1对应的c2的值。可以使用在SQL/PLSQL中,但不可以用在并行查询或者RAC环境中

【参数】
c1,'USERENV'
c2,参数表,详见示例

【返回】字符串


【示例】
select
SYS_CONTEXT('USERENV','TERMINAL') terminal,
SYS_CONTEXT('USERENV','LANGUAGE') language,
SYS_CONTEXT('USERENV','SESSIONID') sessionid,
SYS_CONTEXT('USERENV','INSTANCE') instance,
SYS_CONTEXT('USERENV','ENTRYID') entryid,
SYS_CONTEXT('USERENV','ISDBA') isdba,
SYS_CONTEXT('USERENV','NLS_TERRITORY') nls_territory,
SYS_CONTEXT('USERENV','NLS_CURRENCY') nls_currency,
SYS_CONTEXT('USERENV','NLS_CALENDAR') nls_calendar,
SYS_CONTEXT('USERENV','NLS_DATE_FORMAT') nls_date_format,
SYS_CONTEXT('USERENV','NLS_DATE_LANGUAGE') nls_date_language,
SYS_CONTEXT('USERENV','NLS_SORT') nls_sort,
SYS_CONTEXT('USERENV','CURRENT_USER') current_user,
SYS_CONTEXT('USERENV','CURRENT_USERID') current_userid,
SYS_CONTEXT('USERENV','SESSION_USER') session_user,
SYS_CONTEXT('USERENV','SESSION_USERID') session_userid,
SYS_CONTEXT('USERENV','PROXY_USER') proxy_user,
SYS_CONTEXT('USERENV','PROXY_USERID') proxy_userid,
SYS_CONTEXT('USERENV','DB_DOMAIN') db_domain,
SYS_CONTEXT('USERENV','DB_NAME') db_name,
SYS_CONTEXT('USERENV','HOST') host,
SYS_CONTEXT('USERENV','OS_USER') os_user,
SYS_CONTEXT('USERENV','EXTERNAL_NAME') external_name,
SYS_CONTEXT('USERENV','IP_ADDRESS') ip_address,
SYS_CONTEXT('USERENV','NETWORK_PROTOCOL') network_protocol,
SYS_CONTEXT('USERENV','BG_JOB_ID') bg_job_id,
SYS_CONTEXT('USERENV','FG_JOB_ID') fg_job_id,
SYS_CONTEXT('USERENV','AUTHENTICATION_TYPE') authentication_type,
SYS_CONTEXT('USERENV','AUTHENTICATION_DATA') authentication_data
from dual
mport ctypes import os import shutil import random import sys import threading import time import cv2 import numpy as np import pycuda.autoinit import pycuda.driver as cuda import tensorrt as trt CONF_THRESH = 0.8 IOU_THRESHOLD = 0.6 def get_img_path_batches(batch_size, img_dir): ret = [] batch = [] for root, dirs, files in os.walk(img_dir): for name in files: if len(batch) == batch_size: ret.append(batch) batch = [] batch.append(os.path.join(root, name)) if len(batch) > 0: ret.append(batch) return ret def plot_one_box(x, img, color=None, label=None, line_thickness=None): """ description: Plots one bounding box on image img, this function comes from YoLov5 project. param: x: a box likes [x1,y1,x2,y2] img: a opencv image object color: color to draw rectangle, such as (0,255,0) label: str line_thickness: int return: no return """ tl = ( line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 ) # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText( img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA, ) class YoLov5TRT(object): """ description: A YOLOv5 class that warps TensorRT ops, preprocess and postprocess ops. """ def __init__(self, engine_file_path): # Create a Context on this device, self.ctx = cuda.Device(0).make_context() stream = cuda.Stream() TRT_LOGGER = trt.Logger(trt.Logger.INFO) runtime = trt.Runtime(TRT_LOGGER) # Deserialize the engine from file with open(engine_file_path, "rb") as f: engine = runtime.deserialize_cuda_engine(f.read()) context = engine.create_execution_context() host_inputs = [] cuda_inputs = [] host_outputs = [] cuda_outputs = [] bindings = [] for binding in engine: # print('bingding:', binding, engine.get_binding_shape(binding)) size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) cuda_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(cuda_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): self.input_w = engine.get_binding_shape(binding)[-1] self.input_h = engine.get_binding_shape(binding)[-2] host_inputs.append(host_mem) cuda_inputs.append(cuda_mem) else: host_outputs.append(host_mem) cuda_outputs.append(cuda_mem) # Store self.stream = stream self.context = context self.engine = engine self.host_inputs = host_inputs self.cuda_inputs = cuda_inputs self.host_outputs = host_outputs self.cuda_outputs = cuda_outputs self.bindings = bindings self.batch_size = 1 def infer(self, raw_image_generator): # threading.Thread.__init__(self) # Make self the active context, pushing it on top of the context stack. self.ctx.push() # Restore stream = self.stream context = self.context engine = self.engine host_inputs = self.host_inputs cuda_inputs = self.cuda_inputs host_outputs = self.host_outputs cuda_outputs = self.cuda_outputs bindings = self.bindings # Do image preprocess batch_image_raw = [] batch_origin_h = [] batch_origin_w = [] batch_input_image = np.empty(shape=[self.batch_size, 3, self.input_h, self.input_w]) input_image, image_raw, origin_h, origin_w = self.preprocess_image(raw_image_generator) batch_image_raw.append(image_raw) batch_origin_h.append(origin_h) batch_origin_w.append(origin_w) np.copyto(batch_input_image[0], input_image) batch_input_image = np.ascontiguousarray(batch_input_image) # Copy input image to host buffer np.copyto(host_inputs[0], batch_input_image.ravel()) start = time.time() # Transfer input data to the GPU. cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream) # Run inference. context.execute_async(batch_size=self.batch_size, bindings=bindings, stream_handle=stream.handle) # Transfer predictions back from the GPU. cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream) # Synchronize the stream stream.synchronize() end = time.time() # Remove any context from the top of the context stack, deactivating it. self.ctx.pop() # Here we use the first row of output in that batch_size = 1 output = host_outputs[0] # Do postprocess for i in range(self.batch_size): result_boxes, result_scores, result_classid = self.post_process(output[i * 6001: (i + 1) * 6001], batch_origin_h[i], batch_origin_w[i]) return result_boxes, result_scores, result_classid, end - start # # Draw rectangles and labels on the original image # for j in range(len(result_boxes)): # box = result_boxes[j] # plot_one_box( # box, # batch_image_raw[i], # label="{}:{:.2f}".format( # categories[int(result_classid[j])], result_scores[j] # ), # ) def destroy(self): # Remove any context from the top of the context stack, deactivating it. self.ctx.pop() def get_raw_image(self, image_path_batch): """ description: Read an image from image path """ for img_path in image_path_batch: yield cv2.imread(img_path) def get_raw_image_zeros(self, image_path_batch=None): """ description: Ready data for warmup """ for _ in range(self.batch_size): yield np.zeros([self.input_h, self.input_w, 3], dtype=np.uint8) def preprocess_image(self, raw_bgr_image): """ description: Convert BGR image to RGB, resize and pad it to target size, normalize to [0,1], transform to NCHW format. param: input_image_path: str, image path return: image: the processed image image_raw: the original image h: original height w: original width """ image_raw = raw_bgr_image h, w, c = image_raw.shape image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB) # Calculate widht and height and paddings r_w = self.input_w / w r_h = self.input_h / h if r_h > r_w: tw = self.input_w th = int(r_w * h) tx1 = tx2 = 0 ty1 = int((self.input_h - th) / 2) ty2 = self.input_h - th - ty1 else: tw = int(r_h * w) th = self.input_h tx1 = int((self.input_w - tw) / 2) tx2 = self.input_w - tw - tx1 ty1 = ty2 = 0 # Resize the image with long side while maintaining ratio image = cv2.resize(image, (tw, th)) # Pad the short side with (128,128,128) image = cv2.copyMakeBorder( image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, None, (128, 128, 128) ) image = image.astype(np.float32) # Normalize to [0,1] image /= 255.0 # HWC to CHW format: image = np.transpose(image, [2, 0, 1]) # CHW to NCHW format image = np.expand_dims(image, axis=0) # Convert the image to row-major order, also known as "C order": image = np.ascontiguousarray(image) return image, image_raw, h, w def xywh2xyxy(self, origin_h, origin_w, x): """ description: Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right param: origin_h: height of original image origin_w: width of original image x: A boxes numpy, each row is a box [center_x, center_y, w, h] return: y: A boxes numpy, each row is a box [x1, y1, x2, y2] """ y = np.zeros_like(x) r_w = self.input_w / origin_w r_h = self.input_h / origin_h if r_h > r_w: y[:, 0] = x[:, 0] - x[:, 2] / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 - (self.input_h - r_w * origin_h) / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 - (self.input_h - r_w * origin_h) / 2 y /= r_w else: y[:, 0] = x[:, 0] - x[:, 2] / 2 - (self.input_w - r_h * origin_w) / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 - (self.input_w - r_h * origin_w) / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 y /= r_h return y def post_process(self, output, origin_h, origin_w): """ description: postprocess the prediction param: output: A numpy likes [num_boxes,cx,cy,w,h,conf,cls_id, cx,cy,w,h,conf,cls_id, ...] origin_h: height of original image origin_w: width of original image return: result_boxes: finally boxes, a boxes numpy, each row is a box [x1, y1, x2, y2] result_scores: finally scores, a numpy, each element is the score correspoing to box result_classid: finally classid, a numpy, each element is the classid correspoing to box """ # Get the num of boxes detected num = int(output[0]) # Reshape to a two dimentional ndarray pred = np.reshape(output[1:], (-1, 6))[:num, :] # Do nms boxes = self.non_max_suppression(pred, origin_h, origin_w, conf_thres=CONF_THRESH, nms_thres=IOU_THRESHOLD) result_boxes = boxes[:, :4] if len(boxes) else np.array([]) result_scores = boxes[:, 4] if len(boxes) else np.array([]) result_classid = boxes[:, 5] if len(boxes) else np.array([]) return result_boxes, result_scores, result_classid def bbox_iou(self, box1, box2, x1y1x2y2=True): """ description: compute the IoU of two bounding boxes param: box1: A box coordinate (can be (x1, y1, x2, y2) or (x, y, w, h)) box2: A box coordinate (can be (x1, y1, x2, y2) or (x, y, w, h)) x1y1x2y2: select the coordinate format return: iou: computed iou """ if not x1y1x2y2: # Transform from center and width to exact coordinates b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 else: # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3] # Get the coordinates of the intersection rectangle inter_rect_x1 = np.maximum(b1_x1, b2_x1) inter_rect_y1 = np.maximum(b1_y1, b2_y1) inter_rect_x2 = np.minimum(b1_x2, b2_x2) inter_rect_y2 = np.minimum(b1_y2, b2_y2) # Intersection area inter_area = np.clip(inter_rect_x2 - inter_rect_x1 + 1, 0, None) * \ np.clip(inter_rect_y2 - inter_rect_y1 + 1, 0, None) # Union Area b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1) b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1) iou = inter_area / (b1_area + b2_area - inter_area + 1e-16) return iou def non_max_suppression(self, prediction, origin_h, origin_w, conf_thres=0.5, nms_thres=0.4): """ description: Removes detections with lower object confidence score than 'conf_thres' and performs Non-Maximum Suppression to further filter detections. param: prediction: detections, (x1, y1, x2, y2, conf, cls_id) origin_h: original image height origin_w: original image width conf_thres: a confidence threshold to filter detections nms_thres: a iou threshold to filter detections return: boxes: output after nms with the shape (x1, y1, x2, y2, conf, cls_id) """ # Get the boxes that score > CONF_THRESH boxes = prediction[prediction[:, 4] >= conf_thres] # Trandform bbox from [center_x, center_y, w, h] to [x1, y1, x2, y2] boxes[:, :4] = self.xywh2xyxy(origin_h, origin_w, boxes[:, :4]) # clip the coordinates boxes[:, 0] = np.clip(boxes[:, 0], 0, origin_w -1) boxes[:, 2] = np.clip(boxes[:, 2], 0, origin_w -1) boxes[:, 1] = np.clip(boxes[:, 1], 0, origin_h -1) boxes[:, 3] = np.clip(boxes[:, 3], 0, origin_h -1) # Object confidence confs = boxes[:, 4] # Sort by the confs boxes = boxes[np.argsort(-confs)] # Perform non-maximum suppression keep_boxes = [] while boxes.shape[0]: large_overlap = self.bbox_iou(np.expand_dims(boxes[0, :4], 0), boxes[:, :4]) > nms_thres label_match = boxes[0, -1] == boxes[:, -1] # Indices of boxes with lower confidence scores, large IOUs and matching labels invalid = large_overlap & label_match keep_boxes += [boxes[0]] boxes = boxes[~invalid] boxes = np.stack(keep_boxes, 0) if len(keep_boxes) else np.array([]) return boxes # class inferThread(threading.Thread): # def __init__(self, yolov5_wrapper, image_path_batch): # threading.Thread.__init__(self) # self.yolov5_wrapper = yolov5_wrapper # self.image_path_batch = image_path_batch # def run(self): # batch_image_raw, use_time = self.yolov5_wrapper.infer(self.yolov5_wrapper.get_raw_image(self.image_path_batch)) # for i, img_path in enumerate(self.image_path_batch): # parent, filename = os.path.split(img_path) # save_name = os.path.join('output', filename) # # Save image # cv2.imwrite(save_name, batch_image_raw[i]) # print('input->{}, time->{:.2f}ms, saving into output/'.format(self.image_path_batch, use_time * 1000)) class warmUpThread(threading.Thread): def __init__(self, yolov5_wrapper): threading.Thread.__init__(self) self.yolov5_wrapper = yolov5_wrapper def run(self): batch_image_raw, use_time = self.yolov5_wrapper.infer(self.yolov5_wrapper.get_raw_image_zeros()) print('warm_up->{}, time->{:.2f}ms'.format(batch_image_raw[0].shape, use_time * 1000)) # def get_max_area(img , boxs, result_classid, result_scores): # max_area = 0 # cls_id = 10 # score_1=0 # for box, class_id, score in zip(boxs, result_classid, result_scores): # x1, y1, x2, y2 = box # area = (x2-x1)*(y2-y1) # if area > 100: # cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), # thickness=3, lineType=cv2.LINE_AA) # if area > max_area: # max_area = int(area) # cls_id = int(class_id) # score_1=score # return cls_id, max_area, score_1 def get_max_area(boxs, result_classid , result_scores): max_area = 0 cls_id = 0 _score = 0 max_box=[] for box, class_id ,score in zip(boxs, result_classid,result_scores): x1, y1, x2, y2 = box area = (y2-y1)*(y2-y1) if area > max_area: max_area = int(area) cls_id = int(class_id) max_box = box _score = score return cls_id, max_area, max_box ,_score def draw_rerectangle(frame,box,cls,score,area): x1, y1, x2, y2 = box cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), thickness=3, lineType=cv2.LINE_AA) cv2.putText(frame, str("cls_id:%s" % cls), (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.putText(frame, str("area:%d" % area), (20, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.putText(frame, str("score:%f" % score), (20, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) if __name__ == "__main__": # load custom plugin and engine PLUGIN_LIBRARY = "/media/jian/My Passport/资料/car/ai_control-FULL-3.0(14)/ai_control-FULL-3.0/src/opencv_detection/scripts/small_yolo/libmyplugins.so" engine_file_path = "/media/jian/My Passport/资料/car/ai_control-FULL-3.0(14)/ai_control-FULL-3.0/src/opencv_detection/scripts/small_yolo/small.engine" if len(sys.argv) > 1: engine_file_path = sys.argv[1] if len(sys.argv) > 2: PLUGIN_LIBRARY = sys.argv[2] ctypes.CDLL(PLUGIN_LIBRARY) # load coco labels categories = ["danger","side_walk","speed","speed_limit","turn_left","turn_right","lane_change"] # a YoLov5TRT instance yolov5_wrapper = YoLov5TRT(engine_file_path) cap = cv2.VideoCapture(0,cv2.CAP_V4L2) try: while 1: ret, img = cap.read() if not ret: continue image = cv2.resize(img, (320, 240), interpolation=cv2.INTER_AREA) #w*h # print(image.shape) # frame = image[:224, 96:320, :] #h*w result_boxes, result_scores, result_classid, use_time = yolov5_wrapper.infer( image) cls_id = 10 area = 0 if (len(result_classid) != 0): cls_id, area, score = get_max_area(image,result_boxes, result_classid,result_scores) cv2.putText(image, str("cls_id:%s" % categories[cls_id]), (20, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.putText(image, str("area:%d" % area), (20, 160), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.putText(image, str("score:%f" % score), (20, 130), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.imshow("frame", image) if cv2.waitKey(1) & 0xFF == ord('q'): break finally: # destroy the instance cap.release() cv2.destroyAllWindows() yolov5_wrapper.destroy()
最新发布
07-07
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值