POJ 2528 Mayor's posters

本文探讨了一个关于市长竞选海报放置的算法问题,涉及到线段树数据结构的应用,具体讲解了如何通过线段树来解决海报覆盖的问题,以及如何计算最终可见的海报数量。

Mayor’s posters

https://vjudge.net/problem/POJ-2528
The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
Every candidate can place exactly one poster on the wall.
All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
The wall is divided into segments and the width of each segment is one byte.
Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters’ size, their place and order of placement on the electoral wall.
Input
The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,… , ri.
Output
For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.
在这里插入图片描述
Sample Input
1
5
1 4
2 6
8 10
3 4
7 10
Sample Output
4
C++

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>

using namespace std;

const int MAXN = 10000 + 10;

struct node{
	int l, r, lazy;
}segTree[MAXN << 2];

int cnt, vis[MAXN], L[MAXN], R[MAXN], H[MAXN << 1];

void pushdown(int x)
{
	if(segTree[x].lazy != -1)
	{
		segTree[x << 1].lazy = segTree[x << 1 | 1].lazy = segTree[x].lazy;
		segTree[x].lazy = -1;
	}
}

void build(int x, int l, int r)
{
	segTree[x].l = l;
	segTree[x].r = r;
	if(l == r)
	{
		segTree[x].lazy = -1;
		return;
	}
	int mid = l + r >> 1;
	build(x << 1, l, mid);
	build(x << 1 | 1, mid + 1, r);
	segTree[x].lazy = -1;
}

void update(int x, int l, int r, int val)
{
	if(l <= segTree[x].l && segTree[x].r <= r)
	{
		segTree[x].lazy = val;
		return;
	}
	pushdown(x);
	int mid = segTree[x].l + segTree[x].r >> 1;
	if(r <= mid) update(x << 1, l, r, val);
	else if(l > mid) update(x << 1 | 1, l, r, val);
	else
	{
		update(x << 1, l, mid, val);
		update(x << 1 | 1, mid + 1, r, val);
	}
}

void query(int x, int l, int r)
{
	if(segTree[x].l == segTree[x].r)
	{
		if(segTree[x].lazy != -1)
		{
			if(!vis[segTree[x].lazy])
			{
				cnt ++;
				vis[segTree[x].lazy] = true;
			}
		}
		return;
	}
	pushdown(x);
	int mid = l + r >> 1;
	query(x << 1, l, mid);
	query(x << 1 | 1, mid + 1, r); 
}

int main()
{
	int T;
	scanf("%d", &T);
	while(T --)
	{
		int n;
		memset(vis, false, sizeof(vis));
		cnt = 0;
		int tmp = 1;
		scanf("%d", &n);
		for(int i = 1; i <= n; i ++)
		{
			scanf("%d%d", &L[i], &R[i]);
			H[tmp ++] = L[i];
			H[tmp ++] = R[i];
		}
		sort(H + 1, H + tmp);
		int size = unique(H + 1, H + tmp) - H - 1;
		build(1, 1, size);
		int tl, tr;
		for(int i = 1; i <= n; i ++)
		{
			tl = lower_bound(H + 1, H + size + 1, L[i]) - H;
			tr = lower_bound(H + 1, H + size + 1, R[i]) - H;
			update(1, tl, tr, i);
		}
		query(1, 1, n);
		printf("%d\n", cnt);
	}
	return 0;
}
下载前可以先看下教程 https://pan.quark.cn/s/a4b39357ea24 在网页构建过程中,表单(Form)扮演着用户与网站之间沟通的关键角色,其主要功能在于汇集用户的各类输入信息。 JavaScript作为网页开发的核心技术,提供了多样化的API和函数来操作表单组件,诸如input和select等元素。 本专题将详细研究如何借助原生JavaScript对form表单进行视觉优化,并对input输入框与select下拉框进行功能增强。 一、表单基础1. 表单组件:在HTML语言中,<form>标签用于构建一个表单,该标签内部可以容纳多种表单组件,包括<input>(输入框)、<select>(下拉框)、<textarea>(多行文本输入区域)等。 2. 表单参数:诸如action(表单提交的地址)、method(表单提交的协议,为GET或POST)等属性,它们决定了表单的行为特性。 3. 表单行为:诸如onsubmit(表单提交时触发的动作)、onchange(表单元素值变更时触发的动作)等事件,能够通过JavaScript进行响应式处理。 二、input元素视觉优化1. CSS定制:通过设定input元素的CSS属性,例如border(边框)、background-color(背景色)、padding(内边距)、font-size(字体大小)等,能够调整其视觉表现。 2. placeholder特性:提供预填的提示文字,以帮助用户明确输入框的预期用途。 3. 图标集成:借助:before和:after伪元素或者额外的HTML组件结合CSS定位技术,可以在输入框中嵌入图标,从而增强视觉吸引力。 三、select下拉框视觉优化1. 复选功能:通过设置multiple属性...
【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)内容概要:本文围绕“基于深度强化学习的微能源网能量管理与优化策略”展开研究,重点探讨了如何利用深度强化学习技术对微能源系统进行高效的能量管理与优化调度。文中结合Python代码实现,复现了EI级别研究成果,涵盖了微电网中分布式能源、储能系统及负荷的协调优化问题,通过构建合理的奖励函数与状态空间模型,实现对复杂能源系统的智能决策支持。研究体现了深度强化学习在应对不确定性可再生能源出力、负荷波动等挑战中的优势,提升了系统运行的经济性与稳定性。; 适合人群:具备一定Python编程基础和机器学习背景,从事能源系统优化、智能电网、强化学习应用等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于微能源网的能量调度与优化控制,提升系统能效与经济效益;②为深度强化学习在能源管理领域的落地提供可复现的技术路径与代码参考;③服务于学术研究与论文复现,特别是EI/SCI级别高水平论文的仿真实验部分。; 阅读建议:建议读者结合提供的Python代码进行实践操作,深入理解深度强化学习算法在能源系统建模中的具体应用,重点关注状态设计、动作空间定义与奖励函数构造等关键环节,并可进一步扩展至多智能体强化学习或与其他优化算法的融合研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值