1、NIO

本文详细介绍了Java的非阻塞I/O(NIO)概念,包括Channel、Buffer、Selector等核心组件,以及NIO在文件操作中的应用。接着讨论了Netty框架的优势,如其高效的参数调优、粘包与半包问题的解决方案。最后,通过示例展示了TCP编程的阻塞、非阻塞和多路复用模式,以及UDP编程的基本用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该栏目讲解NIO、Netty组件、Netty参数调优、粘包与半包解决方案、聊天室



NIO 基础

1、NIO 简介

  • 概述:NIO,全称 non-blocking io,是非阻塞 IO
  • 三大组件
    • Channel
    • Buffer
    • Selector

2、IO 模型

  • 同步阻塞:线程自己等待结果
  • 同步非阻塞:线程自己非阻塞的获取结果
  • 多路复用:线程使用 selector 去等待事件的触发
  • 异步非阻塞:一个线程调用获取方法,另一个线程等待结果并返回

3、零拷贝

  • 传统 IO 问题:Java本身并不具备 IO 读写能力,因此要去调用操作系统的读写能力
    传统IO问题
  • NIO 优化:通过 DirectByteBuffer 使用的是操作系统内存,来减少读写
    NIO优化
  • Linux 优化
    • java 调用 transferTo() 方法后,要从 java 程序的用户态切换至内核态,使用 DMA(Direct Memory Access)将数据读入内核缓冲区,不会使用 CPU
    • 只会将一些 offset 和 length 信息拷入socket 缓冲区,几乎无消耗
    • 使用 DMA 将内核缓冲区的数据写入网卡,不会使用 CPU
      Linux 优化

4、Channel 通道

  • 概述:Channel 是一个读写数据的双向通道
  • 常见 channel
    • FileChannel:文件通道
    • DatagramChannel:数据包通道,用于 UDP 协议
    • SocketChannel:套接字通道,用于 TCP 协议
    • ServerSocketChannel:套接字服务端通道,用于 TCP 协议
  • Stream 与 Channel
    • Stream 不会自动缓冲数据,而 Channel 会利用系统提供的发送缓冲区、接收缓冲区
    • Stream 仅支持阻塞 API,Channel 同时支持阻塞、非阻塞 API,网络 Channel 可配合 Selector 实现多路复用
    • 二者均为全双工

5、Buffer 缓存区

  • 概述: Buffer 用于缓冲数据的缓存区,是非线程安全的
  • 常见 Buffer
    • ByteBuffer
      • MappedByteBuffer
      • DirectByteBuffer
      • HeapByteBuffer
    • ShortBuffer
    • IntBuffer
    • LongBuffer
    • FloatBuffer
    • DoubleBuffer
    • CharBuffer

6、Selector 选择器

  • 概述Selector 配合一个线程来管理多个 Channel,获取这些 Channel 上发生的事件,这些 Channel 工作在非阻塞模式下,不会让线程吊死在一个 Channel 上, 适合连接数特别多,但流量低的场景
    selector选择器

ByteBuffer

1、ByteBuffer 结构

  • ByteBuffer 有以下重要属性

    • capacity
    • position
    • limit
  • 一开始
    ByteBuffer结构01

  • 写模式下,position 是写入位置,limit 等于容量,下图表示写入了 4 个字节后的状态
    ByteBuffer结构02

  • flip 动作发生后,position 切换为读取位置,limit 切换为读取限制
    ByteBuffer结构02

  • 读取 4 个字节后,状态
    ByteBuffer结构03

  • clear 动作发生后,状态
    ByteBuffer结构04

  • compact 方法,是把未读完的部分向前压缩,然后切换至写模式
    ByteBuffer结构05

2、ByteBuffer 常用方法

2.1 分配空间

  • :使用 allocate() 方法为 ByteBuffer 分配空间,其他 buffer 类也有该方法
ByteBuffer buf = ByteBuffer.allocate(16);

2.2 写入数据

  • 调用 channel 的 read() 方法
  • 调用 buffer 的 put() 方法
int readBytes = channel.read(buf);
// 或
buf.put((byte)127);

2.3 读取数据

  • 调用 channel 的 write() 方法
  • 调用 buffer 的 get() 方法
int writeBytes = channel.write(buf);
// 或
byte b = buf.get();
  • get() 方法会让 position 读指针向后走,如果想重复读取数据
    • 可以调用 rewind() 方法将 position 重新置为0
    • 或者调用 get(int i) 方法获取 i 的内容,它不会移动读指针

2.4 读写模式切换

  • flip方法:切换 buffer 为读模式
  • clear方法:切换 buffer 为写模式
  • compact方法:切换 buffer 为写模式

2.5 mark 和 reset

  • mark是在读取时,做一个标记,即使 position 改变,只要调用 reset 就能回到 mark 的位置

注意
rewind 和 flip 都会清除 mark 位置

2.6 字符串与 ByteBuffer 互转

// 字符串转换为byteBuffer
ByteBuffer buffer1 = StandardCharsets.UTF_8.encode("你好");
ByteBuffer buffer2 = Charset.forName("utf-8").encode("你好");

// byteBuffer转换为字符串
ByteBuffer buffer3 = StandardCharsets.UTF_8.decode(buffer1);
System.out.println(buffer3.toString());

2.7 分散读取

// 分散读取,有一个文本文件 3parts.txt,内容:onetwothree
try (RandomAccessFile file = new RandomAccessFile("helloword/3parts.txt", "rw")) {
	// 使用如下方式读取,可以将数据填充至多个 buffer
    FileChannel channel = file.getChannel();
    ByteBuffer a = ByteBuffer.allocate(3);
    ByteBuffer b = ByteBuffer.allocate(3);
    ByteBuffer c = ByteBuffer.allocate(5);
    channel.read(new ByteBuffer[]{a, b, c});
    a.flip();
    b.flip();
    c.flip();
    debug(a);
    debug(b);
    debug(c);
} catch (IOException e) {
    e.printStackTrace();
}

2.8 合并写入

// 使用如下方式写入,可以将多个 buffer 的数据填充至 channel
try (RandomAccessFile file = new RandomAccessFile("helloword/3parts.txt", "rw")) {
    FileChannel channel = file.getChannel();
    ByteBuffer d = ByteBuffer.allocate(4);
    ByteBuffer e = ByteBuffer.allocate(4);
    channel.position(11);

    d.put(new byte[]{'f', 'o', 'u', 'r'});
    e.put(new byte[]{'f', 'i', 'v', 'e'});
    d.flip();
    e.flip();
    debug(d);
    debug(e);
    channel.write(new ByteBuffer[]{d, e});
} catch (IOException e) {
    e.printStackTrace();
}

2.9 习题

  • 题目:网络上有多条数据发送给服务端,数据之间使用 \n 进行分隔,但由于某种原因这些数据在接收时,被进行了重新组合,例如原始数据有3条为
    • Hello,world\n
    • I’m zhangsan\n
    • How are you?\n
  • 变成了下面的两个 byteBuffer (黏包,半包)
    • Hello,world\nI’m zhangsan\nHo
    • w are you?\n
public class NioDemo {

    public static void main(String[] args) {
        ByteBuffer source = ByteBuffer.allocate(32);
        source.put("Hello,world\nI'm zhangsan\nHo".getBytes());
        split(source);
        source.put("w are you?\nhaha!\n".getBytes());
        split(source);
    }

    private static void split(ByteBuffer source) {
        source.flip();
        for (int i = 0; i < source.limit(); i++) {
            if (source.get(i) == '\n') {
                int capacity = i + 1 - source.position();
                ByteBuffer target = ByteBuffer.allocate(capacity);
                for (int j = 0; j < capacity; j++) {
                    target.put(source.get());
                }
                ByteBufferUtil.debugAll(target);
            }
        }
        source.compact();
    }
}

/****           ****/
// 工具类
public class ByteBufferUtil {
    private static final char[] BYTE2CHAR = new char[256];
    private static final char[] HEXDUMP_TABLE = new char[256 * 4];
    private static final String[] HEXPADDING = new String[16];
    private static final String[] HEXDUMP_ROWPREFIXES = new String[65536 >>> 4];
    private static final String[] BYTE2HEX = new String[256];
    private static final String[] BYTEPADDING = new String[16];

    static {
        final char[] DIGITS = "0123456789abcdef".toCharArray();
        for (int i = 0; i < 256; i++) {
            HEXDUMP_TABLE[i << 1] = DIGITS[i >>> 4 & 0x0F];
            HEXDUMP_TABLE[(i << 1) + 1] = DIGITS[i & 0x0F];
        }

        int i;

        // Generate the lookup table for hex dump paddings
        for (i = 0; i < HEXPADDING.length; i++) {
            int padding = HEXPADDING.length - i;
            StringBuilder buf = new StringBuilder(padding * 3);
            for (int j = 0; j < padding; j++) {
                buf.append("   ");
            }
            HEXPADDING[i] = buf.toString();
        }

        // Generate the lookup table for the start-offset header in each row (up to 64KiB).
        for (i = 0; i < HEXDUMP_ROWPREFIXES.length; i++) {
            StringBuilder buf = new StringBuilder(12);
            buf.append(NEWLINE);
            buf.append(Long.toHexString(i << 4 & 0xFFFFFFFFL | 0x100000000L));
            buf.setCharAt(buf.length() - 9, '|');
            buf.append('|');
            HEXDUMP_ROWPREFIXES[i] = buf.toString();
        }

        // Generate the lookup table for byte-to-hex-dump conversion
        for (i = 0; i < BYTE2HEX.length; i++) {
            BYTE2HEX[i] = ' ' + StringUtil.byteToHexStringPadded(i);
        }

        // Generate the lookup table for byte dump paddings
        for (i = 0; i < BYTEPADDING.length; i++) {
            int padding = BYTEPADDING.length - i;
            StringBuilder buf = new StringBuilder(padding);
            for (int j = 0; j < padding; j++) {
                buf.append(' ');
            }
            BYTEPADDING[i] = buf.toString();
        }

        // Generate the lookup table for byte-to-char conversion
        for (i = 0; i < BYTE2CHAR.length; i++) {
            if (i <= 0x1f || i >= 0x7f) {
                BYTE2CHAR[i] = '.';
            } else {
                BYTE2CHAR[i] = (char) i;
            }
        }
    }

    /**
     * 打印所有内容
     * @param buffer
     */
    public static void debugAll(ByteBuffer buffer) {
        int oldlimit = buffer.limit();
        buffer.limit(buffer.capacity());
        StringBuilder origin = new StringBuilder(256);
        appendPrettyHexDump(origin, buffer, 0, buffer.capacity());
        System.out.println("+--------+------------------- all -----------------------+--------------+");
        System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), oldlimit);
        System.out.println(origin);
        buffer.limit(oldlimit);
    }

    /**
     * 打印可读取内容
     * @param buffer
     */
    public static void debugRead(ByteBuffer buffer) {
        StringBuilder builder = new StringBuilder(256);
        appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position());
        System.out.println("+--------+------------------- read ---------------------+----------------+");
        System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), buffer.limit());
        System.out.println(builder);
    }

    private static void appendPrettyHexDump(StringBuilder dump, ByteBuffer buf, int offset, int length) {
        if (isOutOfBounds(offset, length, buf.capacity())) {
            throw new IndexOutOfBoundsException(
                    "expected: " + "0 <= offset(" + offset + ") <= offset + length(" + length
                            + ") <= " + "buf.capacity(" + buf.capacity() + ')');
        }
        if (length == 0) {
            return;
        }
        dump.append("+-------------------------------------------------+" +
                   NEWLINE + " |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |" +
                   NEWLINE + "+--------+--------------------------------+----------------+");
        final int startIndex = offset;
        final int fullRows = length >>> 4;
        final int remainder = length & 0xF;

        // Dump the rows which have 16 bytes.
        for (int row = 0; row < fullRows; row++) {
            int rowStartIndex = (row << 4) + startIndex;

            // Per-row prefix.
            appendHexDumpRowPrefix(dump, row, rowStartIndex);

            // Hex dump
            int rowEndIndex = rowStartIndex + 16;
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
            }
            dump.append(" |");

            // ASCII dump
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
            }
            dump.append('|');
        }

        // Dump the last row which has less than 16 bytes.
        if (remainder != 0) {
            int rowStartIndex = (fullRows << 4) + startIndex;
            appendHexDumpRowPrefix(dump, fullRows, rowStartIndex);

            // Hex dump
            int rowEndIndex = rowStartIndex + remainder;
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
            }
            dump.append(HEXPADDING[remainder]);
            dump.append(" |");

            // Ascii dump
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
            }
            dump.append(BYTEPADDING[remainder]);
            dump.append('|');
        }

        dump.append(NEWLINE + "+--------+------------------------------------------+----------------+");
    }

    private static void appendHexDumpRowPrefix(StringBuilder dump, int row, int rowStartIndex) {
        if (row < HEXDUMP_ROWPREFIXES.length) {
            dump.append(HEXDUMP_ROWPREFIXES[row]);
        } else {
            dump.append(NEWLINE);
            dump.append(Long.toHexString(rowStartIndex & 0xFFFFFFFFL | 0x100000000L));
            dump.setCharAt(dump.length() - 9, '|');
            dump.append('|');
        }
    }

    public static short getUnsignedByte(ByteBuffer buffer, int index) {
        return (short) (buffer.get(index) & 0xFF);
    }
}

文件编程

1、FileChannel

  • 工作模式:FileChannel 只能工作在阻塞模式下
  • 常用方法
    • 获取:通过 FileInputStream、FileOutputStream 或者 RandomAccessFile 来获取
    • 读取:调用 read 方法
    • 写入:调用 write 方法
    • 关闭:使用 try 或调用 close 方法
    • 位置:调用 position 方法
    • 文件大小:调用 size 方法
    • 强制写入:调用 force(true) 方法
  • 传输数据
public class TestFileChannelTransferTo {
    public static void main(String[] args) {
        try (
                FileChannel from = new FileInputStream("data.txt").getChannel();
                FileChannel to = new FileOutputStream("to.txt").getChannel();
        ) {
            // 效率高,底层会利用操作系统的零拷贝进行优化
            long size = from.size();
            // left 变量代表还剩余多少字节
            for (long left = size; left > 0; ) {
                System.out.println("position:" + (size - left) + " left:" + left);
                left -= from.transferTo((size - left), left, to);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

2、Path

  • 概述:Path 用来表示文件路径,Paths 是工具类,用来获取 Path 实例
  • 常用方法
Path source = Paths.get("1.txt"); // 相对路径 使用 user.dir 环境变量来定位 1.txt
Path source = Paths.get("D:\\1.txt"); // 绝对路径 代表了  d:\1.txt
Path projects = Paths.get("d:\\data", "projects"); // 代表了  d:\data\projects
Path path = Paths.get("d:\\data\\projects\\a\\..\\b");
System.out.println(path);
System.out.println(path.normalize()); // 正常化路径

3、Files

3.1 检查文件是否存在

Path path = Paths.get("demo/abc.txt");
System.out.println(Files.exists(path));

3.2 创建目录

// 创建一级目录,如果目录已存在或他去多级目录,会抛异常
Path path = Paths.get("demo/d1");
Files.createDirectory(path);

// 创建多级目录
Path path = Paths.get("demo/d1");
Files.createDirectories(path);

3.3 拷贝文件

Path source = Paths.get("demo/data.txt");
Path target = Paths.get("demo/target.txt");

// 如果文件已经存在,会抛异常FileAlreadyExistsException
Files.copy(source,target);
// 如果希望用source覆盖掉target,需要用StandardCopyOption
Files.copy(source,target,StandardCopyOption.REPLACE_EXISTING);

3.4 移动文件

Path source = Paths.get("helloword/data.txt");
Path target = Paths.get("helloword/data.txt");

// StandardCopyOption.ATOMIC_MOVE 保证文件移动的原子性
Files.move(source, target, StandardCopyOption.ATOMIC_MOVE);

3.5 删除文件

Path target = Paths.get("demo/data.txt"); 
Files.delete(target)

3.6 删除目录

// 如果目录还有内容,会抛异常DirectoryNotEmptyException
Path target = Paths.get("demo/d1");
Files.delete(target);

3.7 遍历目录

public static void main(String[] args) throws IOException {
    Path path = Paths.get("C:\\Program Files\\Java\\jdk1.8.0_91");
    AtomicInteger dirCount = new AtomicInteger();
    AtomicInteger fileCount = new AtomicInteger();
    Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
        @Override
        public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) 
            	throws IOException {
            System.out.println(dir);
            dirCount.incrementAndGet();
            return super.preVisitDirectory(dir, attrs);
        }

        @Override
        public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) 
            	throws IOException {
            System.out.println(file);
            fileCount.incrementAndGet();
            return super.visitFile(file, attrs);
        }
    });
    System.out.println(dirCount);
    System.out.println(fileCount);
}

3.8 统计文件的数目

Path path = Paths.get("C:\\Program Files\\Java\\jdk1.8.0_91");
AtomicInteger fileCount = new AtomicInteger();
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
    @Override
    public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) 
        throws IOException {
        if (file.toFile().getName().endsWith(".jar")) {
            fileCount.incrementAndGet();
        }
        return super.visitFile(file, attrs);
    }
});
System.out.println(fileCount);

3.9 删除多级目录

Path path = Paths.get("d:\\a");
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
    @Override
    public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) 
        throws IOException {
        Files.delete(file);
        return super.visitFile(file, attrs);
    }

    @Override
    public FileVisitResult postVisitDirectory(Path dir, IOException exc) 
        throws IOException {
        Files.delete(dir);
        return super.postVisitDirectory(dir, exc);
    }
});

3.10 拷贝多级目录

long start = System.currentTimeMillis();
String source = "D:\\Snipaste-1.16.2-x64";
String target = "D:\\Snipaste-1.16.2-x64aaa";

Files.walk(Paths.get(source)).forEach(path -> {
    try {
        String targetName = path.toString().replace(source, target);
        // 是目录
        if (Files.isDirectory(path)) {
            Files.createDirectory(Paths.get(targetName));
        }
        // 是普通文件
        else if (Files.isRegularFile(path)) {
            Files.copy(path, Paths.get(targetName));
        }
    } catch (IOException e) {
        e.printStackTrace();
    }
});
long end = System.currentTimeMillis();
System.out.println(end - start);

网络编程

1、TCP 编程

1.1 阻塞模式

  • 概述阻塞模式下,相关方法会导致线程暂停。单线程下,阻塞方法相互影响,导致不能正常工作。多线程情况下,如果连接过多,上下文频繁切换导致性能降低。虽然可以使用线程池技术可以减少线程数和线程上下文切换,但很多会话长时间失活,会阻塞线程池中所有线程,因此,阻塞模式下不适合长连接,适合短连接
  • 案例
// 服务端
public class ServerDemo {

    public static void main(String[] args) throws IOException {
        final ServerSocketChannel ssc = ServerSocketChannel.open();
        ssc.bind(new InetSocketAddress(8899));
        ByteBuffer buffer = ByteBuffer.allocate(32);

        while (true) {
            final SocketChannel sc = ssc.accept(); // 阻塞方法
            final int read = sc.read(buffer);  // 阻塞方法
            if (read != 0) {
                buffer.flip();
                ByteBufferUtil.debugAll(buffer);
                buffer.clear();
            }
        }
    }
}

// 客户端
public class ClientDemo {
    
    public static void main(String[] args) throws IOException {
        SocketChannel channel = SocketChannel.open();
        channel.connect(new InetSocketAddress("127.0.0.1", 8899));
        channel.write(ByteBuffer.wrap("Hello".getBytes()));
    }
}

1.2 非阻塞模式

  • 概述非阻塞模式下,相关方法不会让线程暂停。在没有连接建立和有数据可读取的时候,线程仍然在运行,白白浪费了 CPU,而且在数据复制过程中,线程实际还是阻塞的(AIO 改进的地方)
  • 案例
// 服务端
public class ServerDemo {

    public static void main(String[] args) throws IOException {
        
        ByteBuffer buffer = ByteBuffer.allocate(30);
        List<SocketChannel> channels = new ArrayList<>();

        ServerSocketChannel ssc = ServerSocketChannel.open();
        ssc.bind(new InetSocketAddress(8866));
        // 非阻塞模式
        ssc.configureBlocking(false);

        while (true) {
            final SocketChannel sc = ssc.accept();  // 非阻塞模式下,该方法在没连接时会返回null
            if (sc != null) {
                sc.configureBlocking(false);
                channels.add(sc);
                System.out.println("连接建立...");
            }
            for (SocketChannel channel : channels) {
                // 读取数据
                int read = channel.read(buffer); // 非阻塞模式下,该方法在没数据时会返回0
                if (read != 0) {
                    buffer.flip();
                    ByteBufferUtil.debugAll(buffer);
                    buffer.clear();
                }
            }
        }
    }
}

// 客户端
public class ClientDemo {

    public static void main(String[] args) throws IOException {
        SocketChannel channel = SocketChannel.open();
        channel.connect(new InetSocketAddress("127.0.0.1", 8866));
		// channel.write(ByteBuffer.wrap("Hello".getBytes()));
        Scanner input = new Scanner(System.in);
        System.out.print("请输入内容:");
        while(input.hasNext()){
            final String msg = input.next();
            channel.write(ByteBuffer.wrap(msg.getBytes()));
            System.out.print("请输入内容:");
        }
    }
}

3.2 多路复用模式

  • 概述使用单线程配合 Selector 监控多个 Channel 的读写事件
  • 优点
    • 事件发生时线程才去处理,从而避免非阻塞模式下所做无用功
    • 节约了线程的数量
    • 减少了线程上下文切换
selector模式
selector
thread
channel
channel
channel
  • 基本使用
// 服务端
@Slf4j
public class ServerDemo3 {

    public static void main(String[] args) {
        try (ServerSocketChannel ssc = ServerSocketChannel.open()) {
            // 创建Selector
            Selector selector = Selector.open();
            // 设置channel为非阻塞模式
            ssc.configureBlocking(false);
            // 绑定事件
            ssc.register(selector, SelectionKey.OP_ACCEPT);
            // channel绑定端口号
            ssc.bind(new InetSocketAddress(8080));

            while (true) {
                // 以阻塞方式监听channel直到绑定事件发生
                final int count = selector.select();
                log.info("channel连接数:{}", count);
                final Iterator<SelectionKey> iterator = selector.selectedKeys().iterator();
                while (iterator.hasNext()) {
                    final SelectionKey key = iterator.next();
                    // 事件发生后,就会将相关的selectionKey放入selectedKeys集合,但不会在处理完后从集合中移除
                    iterator.remove();
                    if (key.isAcceptable()) { // 连接事件
                        final SocketChannel sc = ssc.accept();
                        sc.configureBlocking(false);
                        final SelectionKey scKey = sc.register(selector, SelectionKey.OP_READ);
                        StringBuilder sb = new StringBuilder();
                        for (int i = 0; i < 300000; i++) {
                            sb.append("a");
                        }
                        ByteBuffer buffer = Charset.defaultCharset().encode(sb.toString());
                        final int writeLen = sc.write(buffer);
                        log.info("实际写入字节数:{}", writeLen);
                        if (buffer.hasRemaining()) {
                            scKey.interestOps(scKey.interestOps() + SelectionKey.OP_WRITE);
                            scKey.attach(buffer);
                        }
                    } else if (key.isReadable()) { // 读事件
                        SocketChannel sc = (SocketChannel) key.channel();
                        ByteBuffer buffer = ByteBuffer.allocate(1024 * 1024);
                        final int readLen = sc.read(buffer);
                        if (readLen == -1) {
                            // cancel()会取消注册在selector上的channel,并从集合中删除selectionKey,
                            // 后续不会再监听事件
                            key.cancel();
                            sc.close();
                        } else {
                            buffer.flip();
                            ByteBufferUtil.debugAll(buffer);
                        }
                    } else if (key.isWritable()) { // 写事件
                        SocketChannel sc = (SocketChannel) key.channel();
                        ByteBuffer buffer = (ByteBuffer) key.attachment();
                        final int writeLen = sc.write(buffer);
                        log.info("实际写入字节数:{}", writeLen);
                        buffer.clear();
                        if (!buffer.hasRemaining()) {
                            key.interestOps(key.interestOps() - SelectionKey.OP_WRITE);
                            key.attach(null);
                        }
                    }
                }
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

// 客户端
@Slf4j
public class ClientDemo3 {

    public static void main(String[] args) throws IOException {
        SocketChannel channel = SocketChannel.open();
        Selector selector = Selector.open();
        channel.configureBlocking(false);
        channel.register(selector, SelectionKey.OP_CONNECT | SelectionKey.OP_READ);
        channel.connect(new InetSocketAddress("localhost", 8080));

        int count = 0;
        while (true) {
            selector.select();
            final Iterator<SelectionKey> iterator = selector.selectedKeys().iterator();
            while (iterator.hasNext()) {
                final SelectionKey key = iterator.next();
                iterator.remove();
                if (key.isConnectable()) {
                    log.info("连接状态:{}", channel.finishConnect());
                } else if (key.isReadable()) {
                    ByteBuffer buffer = ByteBuffer.allocate(1024 * 1024);
                    count += channel.read(buffer);
                    buffer.clear();
                    System.out.println(count);
                }
            }
        }
    }
}
  • 优化
// BossEventLoop类
@Slf4j
public class BossEventLoop implements Runnable {

    private Selector boss;
    private WorkerEventLoop[] workers;
    private volatile boolean start = false;
    private final AtomicInteger index = new AtomicInteger();

    public void register() {
        if (!start) {
            try {
                ServerSocketChannel server = ServerSocketChannel.open();
                server.bind(new InetSocketAddress(8899));
                server.configureBlocking(false);
                this.boss = Selector.open();
                server.register(this.boss, SelectionKey.OP_ACCEPT, null);
                initWorkers();
                new Thread(this, "boss").start();
                log.info("Boss Event Loop Start...");
                this.start = true;
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }

    private void initWorkers() {
        this.workers = new WorkerEventLoop[2];
        for (int i = 0; i < workers.length; i++) {
            workers[i] = new WorkerEventLoop(i);
        }
    }

    @Override
    public void run() {
        while (true) {
            try {
                this.boss.select();
                final Iterator<SelectionKey> iterator = this.boss.selectedKeys().iterator();
                while (iterator.hasNext()) {
                    final SelectionKey key = iterator.next();
                    iterator.remove();
                    if (key.isAcceptable()) {
                        ServerSocketChannel ssc = (ServerSocketChannel) key.channel();
                        final SocketChannel sc = ssc.accept();
                        sc.configureBlocking(false);
                        this.workers[this.index.getAndIncrement() % this.workers.length].register(sc);
                    }
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }
}

// WorkerEventLoop类
@Slf4j
public class WorkerEventLoop implements Runnable {

    private Selector worker;
    private volatile boolean start = false;
    private int index;

    private final ConcurrentLinkedQueue<Runnable> tasks = new ConcurrentLinkedQueue<>();

    public WorkerEventLoop(int index) {
        this.index = index;
    }

    public void register(SocketChannel sc) throws IOException {
        if (!start) {
            worker = Selector.open();
            new Thread(this, "Worker" + index).start();
            this.start = true;
        }
        tasks.add(() -> {
            try {
                SelectionKey key = sc.register(worker, 0, null);
                key.interestOps(SelectionKey.OP_READ);
                worker.selectNow();
            } catch (Exception e) {
                e.printStackTrace();
            }
        });
        worker.wakeup();
    }

    @Override
    public void run() {
        while (true) {
            try {
                worker.select();
                final Runnable task = tasks.poll();
                if (task != null) {
                    task.run();
                }
                final Iterator<SelectionKey> iterator = worker.selectedKeys().iterator();
                while (iterator.hasNext()) {
                    final SelectionKey key = iterator.next();
                    if (key.isReadable()) {
                        final SocketChannel sc = (SocketChannel) key.channel();
                        ByteBuffer buffer = ByteBuffer.allocate(128);
                        try {
                            final int readLen = sc.read(buffer);
                            if (readLen == -1) {
                                key.cancel();
                                sc.close();
                            } else {
                                buffer.flip();
                                log.debug("{} message:", sc.getRemoteAddress());
                                ByteBufferUtil.debugAll(buffer);
                            }
                        } catch (Exception e) {
                            e.printStackTrace();
                            key.cancel();
                            sc.close();
                        }
                    }
                    iterator.remove();
                }
            } catch (IOException e) {
                e.printStackTrace();
            }

        }
    }
}

// 测试类
class EventLoopDemo {
    public static void main(String[] args) {
        new BossEventLoop().register();
    }
}

2、UDP 编程

  • 概述:UDP 协议在传输数据前不需要建立连接,也避免了后续的断开连接,虽然不安全,但传输效率高。在数据报文超过缓存区大小时,多出来的数据会被抛弃
  • 基本使用
// 服务端
public class UdpServer {

    public static void main(String[] args) {
        try (DatagramChannel server = DatagramChannel.open()) {
            server.bind(new InetSocketAddress(8899));
            ByteBuffer buffer = ByteBuffer.allocate(32);
            while(true){
                server.receive(buffer);
                buffer.flip();
                ByteBufferUtil.debugAll(buffer);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

// 客户端
public class UdpClient {

    public static void main(String[] args) {
        try (DatagramChannel client = DatagramChannel.open()) {
            final InetSocketAddress socketAddress = new InetSocketAddress("localhost", 8899);
            final ByteBuffer buffer = Charset.defaultCharset().encode("Wood World");
            client.send(buffer, socketAddress);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值