codeforces 730 A Toda 2

本文介绍了一种解决CodeForces 730A问题的有效算法。通过分析题目要求,采用多集合存储数据并利用特殊比较方式优化处理流程。详细解释了如何通过选择性地减少特定数值来最大化最终相同值的大小。

Problem

codeforces.com/problemset/problem/730/A

Reference

blog.youkuaiyun.com/ACMore_Xiong/article/details/52907334

题意

有 n 个正整数,每次可以选其中的 2 ~ 5 个数来同时减掉 1,减到 0 之后可以继续减但值还是 0。

要使得它们最终全部相等,并且让这个数尽量大。

Analysis

只考虑同时减2个或3个的情况(如果有多个相等的最大值,可以把它们分成两个一组或三个一组,多减几次)。

如果刚好有3个相等的最大值,就选中那3个一起减;否则,选最大的两个一起减。直到最大值和最小值相等。

之前以为 multiset 的 rbegin() 和 end() 返回值是一样的,一直 RE。

但其实 end() 返回的是最后一个元素的后一个位置,而 rbegin() 是最后一个元素的位置。

multiset 的 erase() 不能接受 rbegin() 的返回值(类型是 reverse_iterator),但能接受 begin() 的返回值,所以我是按降序排。

听说 multiset 比较相等的时候不是用“==”,而是用“ ! (a < b) && ! (b < a) ”,所以不需要重载“==”,只要重载“<”。(用 count() 的时候)

(p.s.:原来“ ios::sync_with_stdio(false) ”这句是要写在函数里面的…)

Source code

#include <iostream>
#include <string>
#include <vector>
#include <set>
using namespace std;
const int N = 100;

struct node
{
	int id, r;
	node() {}
	node(int _i, int _r): id(_i), r(_r) {}
	bool operator < (const node &nd) const
	{
		return r > nd.r;
	}
};

multiset<node> ms;
vector<string> ans;

int main()
{
	ios::sync_with_stdio(false);
	int n;
	cin >> n;
	for(int i=0, r; i<n; ++i)
	{
		cin >> r;
		ms.insert(node(i, r));
	}
	for(int num=2; ms.begin()->r != ms.rbegin()->r; num=2)
	{
		if(ms.count(*ms.begin()) == 3)
			++num;
		vector<node> v(num);
		string s(n, '0');
		for(int i=0; i<num; ++i)
		{
			v[i] = *ms.begin();
			ms.erase(ms.begin());
			if(--v[i].r < 0)
				v[i].r = 0;
			s[v[i].id] = '1';
		}
		ans.push_back(s);
		ms.insert(v.begin(), v.end());
	}
	cout << ms.begin()->r << '\n' << ans.size() << '\n';
	for(int i=0, e=ans.size(); i<e; ++i)
		cout << ans[i] << '\n';
	ms.clear();
	ans.clear();
	return 0;
}


【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术资源,聚焦于电力系统中低碳经济调度问题,结合N-1安全准则与分布鲁棒机会约束(DRCC)方法,提升调度模型在不确定性环境下的鲁棒性和可行性。该资源提供了完整的Matlab代码实现,涵盖建模、优化求解及仿真分析全过程,适用于复杂电力系统调度场景的科研复现与算法验证。文中还列举了大量相关领域的研究主题与代码资源,涉及智能优化算法、机器学习、电力系统管理、路径规划等多个方向,展示了广泛的科研应用支持能力。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源调度、智能电网相关工作的工程师。; 使用场景及目标:①复现高水平期刊(如EI/SCI)关于低碳经济调度的研究成果;②深入理解N-1安全约束与分布鲁棒优化在电力调度中的建模方法;③开展含新能源接入的电力系统不确定性优化研究;④为科研项目、论文撰写或工程应用提供可运行的算法原型和技术支撑。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码与案例数据,按照目录顺序逐步学习,并重点理解DRCC建模思想与Matlab/YALMIP/CPLEX等工具的集成使用方式,同时可参考文中列出的同类研究方向拓展研究思路。
内容概要:本文详细介绍了一个基于MATLAB实现的电力负荷预测项目,采用K近邻回归(KNN)算法进行建模。项目从背景意义出发,阐述了电力负荷预测在提升系统效率、优化能源配置、支撑智能电网和智慧城市建设等方面的重要作用。针对负荷预测中影响因素多样、时序性强、数据质量差等挑战,提出了包括特征工程、滑动窗口构造、数据清洗与标准化、K值与距离度量优化在内的系统性解决方案。模型架构涵盖数据采集、预处理、KNN回归原理、参数调优、性能评估及工程部署全流程,并支持多算法集成与可视化反馈。文中还提供了MATLAB环境下完整的代码实现流程,包括数据加载、归一化、样本划分、K值选择、模型训练预测、误差分析与结果可视化等关键步骤,增强了模型的可解释性与实用性。; 适合人群:具备一定MATLAB编程基础和机器学习基础知识,从事电力系统分析、能源管理、智能电网或相关领域研究的研发人员、工程师及高校师生;适合工作1-3年希望提升实际项目开发能力的技术人员; 使用场景及目标:①应用于短期电力负荷预测,辅助电网调度与发电计划制定;②作为教学案例帮助理解KNN回归在实际工程中的应用;③为新能源接入、需求响应、智慧能源系统提供数据支持;④搭建可解释性强、易于部署的轻量级预测模型原型; 阅读建议:建议结合MATLAB代码实践操作,重点关注特征构造、参数调优与结果可视化部分,深入理解KNN在时序数据中的适应性改进方法,并可进一步拓展至集成学习或多模型融合方向进行研究与优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值