1、lambda表达式的类型,叫做“目标类型(target type)”。lambda表达式的目标类型是“函数式接口(functional interface)”,这是Java8新引入的概念。它的定义是:一个接口,如果只有一个显式声明的抽象方法,那么它就是一个函数式接口。一般用@FunctionalInterface标注出来(也可以不标)。举例如下:
@FunctionalInterface
public interface Runnable { void run(); }
public interface Callable<V> { V call() throws Exception; }
public interface ActionListener { void actionPerformed(ActionEvent e); }
public interface Comparator<T> { int compare(T o1, T o2); boolean equals(Object obj); }
注意最后这个Comparator接口。它里面声明了两个方法,貌似不符合函数式接口的定义,但它的确是函数式接口。这是因为equals方法是Object的,所有的接口都会声明Object的public方法——虽然大多是隐式的。所以,Comparator显式的声明了equals不影响它依然是个函式数接口。
2、lambda表达式与集合类批处理操作(或者叫块操作)
集合类的批处理操作,这是Java8的另一个重要特性,它与lambda表达式的配合使用乃是Java8的最主要特性。集合类的批处理操作API的目的是实现集合类的“内部迭代”,并期望充分利用现代多核CPU进行并行计算。
Java8之前集合类的迭代(Iteration)都是外部的,即客户代码。而内部迭代意味着改由Java类库来进行迭代,而不是客户代码。
例如:
for(Object o: list) { // 外部迭代
System.out.println(o);
}
可以写成:
list.forEach(o -> {System.out.println(o);}); //forEach函数实现内部迭代
集合类(包括List)现在都有一个forEach方法,对元素进行迭代(遍历),所以我们不需要再写for循环了。forEach方法接受一个函数式接口Consumer做参数,所以可以使用lambda表达式
3、流(stream)
Java8为集合类引入了另一个重要概念:流(stream)。一个流通常以一个集合类实例为其数据源,然后在其上定义各种操作。流的API设计使用了管道(pipelines)模式。对流的一次操作会返回另一个流。如同IO的API或者StringBuffer的append方法那样,从而多个不同的操作可以在一个语句里串起来。看下面的例子:
List<Shape> shapes = ...
shapes.stream()
.filter(s -> s.getColor() == BLUE)
.forEach(s -> s.setColor(RED));
首先调用stream方法,以集合类对象shapes里面的元素为数据源,生成一个流。然后在这个流上调用filter方法,挑出蓝色的,返回另一个流。最后调用forEach方法将这些蓝色的物体喷成红色。(forEach方法不再返回流,而是一个终端方法,类似于StringBuffer在调用若干append之后的那个toString)
filter方法的参数是Predicate类型,forEach方法的参数是Consumer类型,它们都是函数式接口,所以可以使用lambda表达式。
还有一个方法叫parallelStream(),顾名思义它和stream()一样,只不过指明要并行处理,以期充分利用现代CPU的多核特性。
shapes.parallelStream(); // 或shapes.stream().parallel()
下面是典型的大数据处理方法,Filter-Map-Reduce:
//给出一个String类型的数组,找出其中所有不重复的素数
public void distinctPrimary(String... numbers) {
List<String> l = Arrays.asList(numbers);
List<Integer> r = l.stream()
.map(e -> new Integer(e))
.filter(e -> Primes.isPrime(e))
.distinct()
.collect(Collectors.toList());
System.out.println("distinctPrimary result is: " + r);
}
例子解析:
第一步:传入一系列String(假设都是合法的数字),转成一个List,然后调用stream()方法生成流。
第二步:调用流的map方法把每个元素由String转成Integer,得到一个新的流。map方法接受一个Function类型的参数,上面介绍了,Function是个函数式接口,所以这里用lambda表达式。
第三步:调用流的filter方法,过滤那些不是素数的数字,并得到一个新流。filter方法接受一个Predicate类型的参数,上面介绍了,Predicate是个函数式接口,所以这里用lambda表达式。
第四步:调用流的distinct方法,去掉重复,并得到一个新流。这本质上是另一个filter操作。
第五步:用collect方法将最终结果收集到一个List里面去。collect方法接受一个Collector类型的参数,这个参数指明如何收集最终结果。在这个例子中,结果简单地收集到一个List中。我们也可以用Collectors.toMap(e->e, e->e)把结果收集到一个Map中,它的意思是:把结果收到一个Map,用这些素数自身既作为键又作为值。toMap方法接受两个Function类型的参数,分别用以生成键和值,Function是个函数式接口,所以这里都用lambda表达式。
你可能会觉得在这个例子里,List l被迭代了好多次,map,filter,distinct都分别是一次循环,效率会不好。实际并非如此。这些返回另一个Stream的方法都是“懒(lazy)”的,而最后返回最终结果的collect方法则是“急(eager)”的。在遇到eager方法之前,lazy的方法不会执行。
当遇到eager方法时,前面的lazy方法才会被依次执行。而且是管道贯通式执行。这意味着每一个元素依次通过这些管道。例如有个元素“3”,首先它被map成整数型3;然后通过filter,发现是素数,被保留下来;又通过distinct,如果已经有一个3了,那么就直接丢弃,如果还没有则保留。这样,3个操作其实只经过了一次循环。
除collect外其它的eager操作还有forEach,toArray,reduce等。
4、方法引用
使用方法引用,你的程序会变得更短些。现在distinctPrimarySum(计算所有素数的和)方法可以改写如下:
public void distinctPrimarySum(String... numbers) {
List<String> l = Arrays.asList(numbers);
int sum = l.stream().map(Integer::new).filter(Primes::isPrime).distinct().sum();
System.out.println("distinctPrimarySum result is: " + sum);
}
5、默认方法
Java8中,接口声明里可以有方法实现了,叫做默认方法。在此之前,接口里的方法全部是抽象方法。
public interface MyInterf {
String m1();
default String m2() {
return "Hello default method!";
}
}
除了默认方法,Java8的接口也可以有静态方法的实现:
public interface MyInterf {
String m1();
default String m2() {
return "Hello default method!";
}
static String m3() {
return "Hello static method in Interface!";
}
}
6、生成器函数(Generator function)
有时候一个流的数据源不一定是一个已存在的集合对象,也可能是个“生成器函数”。一个生成器函数会产生一系列元素,供给一个流。Stream.generate(Supplier<T> s)就是一个生成器函数。其中参数Supplier是一个函数式接口,里面有唯一的抽象方法 <T> get()。
下面这个例子生成并打印5个随机数:
Stream.generate(Math::random).limit(5).forEach(System.out::println);
注意这个limit(5),如果没有这个调用,那么这条语句会永远地执行下去。也就是说这个生成器是无穷的。这种调用叫做终结操作,或者短路(short-circuiting)操作。