如何自学黑客&网络安全
黑客零基础入门学习路线&规划
初级黑客
1、网络安全理论知识(2天)
①了解行业相关背景,前景,确定发展方向。
②学习网络安全相关法律法规。
③网络安全运营的概念。
④等保简介、等保规定、流程和规范。(非常重要)
2、渗透测试基础(一周)
①渗透测试的流程、分类、标准
②信息收集技术:主动/被动信息搜集、Nmap工具、Google Hacking
③漏洞扫描、漏洞利用、原理,利用方法、工具(MSF)、绕过IDS和反病毒侦察
④主机攻防演练:MS17-010、MS08-067、MS10-046、MS12-20等
3、操作系统基础(一周)
①Windows系统常见功能和命令
②Kali Linux系统常见功能和命令
③操作系统安全(系统入侵排查/系统加固基础)
4、计算机网络基础(一周)
①计算机网络基础、协议和架构
②网络通信原理、OSI模型、数据转发流程
③常见协议解析(HTTP、TCP/IP、ARP等)
④网络攻击技术与网络安全防御技术
⑤Web漏洞原理与防御:主动/被动攻击、DDOS攻击、CVE漏洞复现
5、数据库基础操作(2天)
①数据库基础
②SQL语言基础
③数据库安全加固
6、Web渗透(1周)
①HTML、CSS和JavaScript简介
②OWASP Top10
③Web漏洞扫描工具
④Web渗透工具:Nmap、BurpSuite、SQLMap、其他(菜刀、漏扫等)
恭喜你,如果学到这里,你基本可以从事一份网络安全相关的工作,比如渗透测试、Web 渗透、安全服务、安全分析等岗位;如果等保模块学的好,还可以从事等保工程师。薪资区间6k-15k
到此为止,大概1个月的时间。你已经成为了一名“脚本小子”。那么你还想往下探索吗?
如果你想要入坑黑客&网络安全,笔者给大家准备了一份:282G全网最全的网络安全资料包评论区留言即可领取!
7、脚本编程(初级/中级/高级)
在网络安全领域。是否具备编程能力是“脚本小子”和真正黑客的本质区别。在实际的渗透测试过程中,面对复杂多变的网络环境,当常用工具不能满足实际需求的时候,往往需要对现有工具进行扩展,或者编写符合我们要求的工具、自动化脚本,这个时候就需要具备一定的编程能力。在分秒必争的CTF竞赛中,想要高效地使用自制的脚本工具来实现各种目的,更是需要拥有编程能力.
如果你零基础入门,笔者建议选择脚本语言Python/PHP/Go/Java中的一种,对常用库进行编程学习;搭建开发环境和选择IDE,PHP环境推荐Wamp和XAMPP, IDE强烈推荐Sublime;·Python编程学习,学习内容包含:语法、正则、文件、 网络、多线程等常用库,推荐《Python核心编程》,不要看完;·用Python编写漏洞的exp,然后写一个简单的网络爬虫;·PHP基本语法学习并书写一个简单的博客系统;熟悉MVC架构,并试着学习一个PHP框架或者Python框架 (可选);·了解Bootstrap的布局或者CSS。
8、超级黑客
这部分内容对零基础的同学来说还比较遥远,就不展开细说了,附上学习路线。
网络安全工程师企业级学习路线
如图片过大被平台压缩导致看不清的话,评论区点赞和评论区留言获取吧。我都会回复的
视频配套资料&国内外网安书籍、文档&工具
当然除了有配套的视频,同时也为大家整理了各种文档和书籍资料&工具,并且已经帮大家分好类了。
一些笔者自己买的、其他平台白嫖不到的视频教程。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
(1)暴露面受攻击风险
基于推广和使用的考虑,往往将大模型部署在云端,并以 API 的方式将相关功能开放给其他用户,以实现模型即服务(MaaS),这些算法模型、训练数据势必面临着来自互联网恶意用户的攻击、窃取的风险。
(2)逆向攻击风险
通过模拟大量输入请求得到大量模型输出,从而逆向还原模型功能,达到窃取模型或者训练数据的目的。
训练数据泄露隐私、机密信息
(1)信息采集范围更广
在传统互联网应用当中,应用方采集用户的手机号、姓名、性别、身份证号码等个人信息以及操作记录、消费记录等行为信息,而通用人工智能应用除上述信息外,还广泛采集其他具有强个人属性的唯一生物特征信息,如声纹、虹膜、指纹等。
(2)AI自学习泄露风险
例如员工在办公环境中使用智能问答平台时,容易将公司的商业机密信息输入平台寻找答案,而平台在获取到该信息后又用于自学习过程,继而导致机密信息在其它场景下泄露。
训练数据滥用,输出不良信息
(1)内容审核不到位
目前全球互联网流量每秒已超 PB 级别,传统内容审核模式捉襟见肘。
(2)训练数据不合规风险
如果为了节省成本,对采集的数据不清洗或清洗不彻底,滥用、误用低质量、不完整的数据,导致输出不良信息,引发监管处罚。
模型可靠性风险
- 数据源污染
- 模型鲁棒性缺乏
- 算法的黑箱性
- 算法的偏见性
数据源污染
(1)训练数据不可控
例如采集数据未清洗、清洗不到位,或者直接使用不可信第三方数据源。
(2)训练数据特殊性,导致模型效率低下
由于大模型神经网络训练和推理需要使用高耗能的GPU和 TPU等加速硬件,如果用于训练数据是一些特殊样本,如海绵样本,可造成大模型性能极低。
(3)数据源中被植入毒化数据、后门数据
攻击者可在污染数据源中植入毒化数据、后门数据,从而导致大模型的决策偏离预期,甚至攻击者可在不破坏模型原来准确率的同时入侵模型,使大模型在后续应用过程中做出符合攻击者预期的决策。
模型鲁棒性缺乏
(1)训练数据无法覆盖所有情况
大模型训练需要完整的数据集,而训练数据往往无法覆盖到真实世界的各种异常场景,导致对于训练中未出现的、真实世界的各种异常输入,大模型无法做出准确的判断与决策。
(2)攻击者添加干扰噪声
攻击者可在输入样本中添加细微到人眼无法识别的干扰噪声,从而在不引起注意的情况下,导致系统做出偏离预期的错误决策。
(3)攻击者输入伪造信息
攻击者伪造具备个体唯一性特征的信息(指纹、虹膜、面容等),并作为智能身份认证系统的输入,实现伪造攻击。
算法的黑箱性
(1)算法结构隐层
AGI 核心基础为深度学习,其算法结构存在多个隐层,导致输入与输出之间存在人类难以理解的因果关系、逻辑关系。
(2)算法模型自适应、自学习性等
具有自适应、自学习等特性,复杂程度超过人类大脑理解范畴,造成不可解释性,给人工智能安全事件的溯源分析带来了严峻挑战。
算法的偏见性
(1)本身无判断能力
人工智能模型算法追求的是统计的最优解,本身并不具备客观公正的判断能力。
(2)价值判断具有地域、文化性
模型对于价值的判断完全依赖于训练数据,而伦理、道德、政治等复杂问题本身具有地域、文化特性。
滥用、误用风险
- 危害社会稳定
- 降低企业创造积极性
- 侵犯个人基本权益
- 危害网络空间安全
危害社会稳定
(1)生成虚假信息、负面信息
混淆视听、左右公众舆论,甚至改变热点事件、政治事件的舆论走向,给社会带来不稳定因素。
(2)深度伪造
制作虚假负面音频、视频等信息,严重扰乱社会正常秩序,并可用于欺诈、诈骗等违法犯罪活动。
降低企业创造积极性
给大家的福利
零基础入门
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
同时每个成长路线对应的板块都有配套的视频提供:
因篇幅有限,仅展示部分资料
网络安全面试题
绿盟护网行动
还有大家最喜欢的黑客技术
网络安全源码合集+工具包
所有资料共282G,朋友们如果有需要全套《网络安全入门+黑客进阶学习资源包》,可以扫描下方二维码领取(如遇扫码问题,可以在评论区留言领取哦)~
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!