ZXing-C++源码编译(linux环境)
ZXing-CPP是一个用C++实现的开源、多格式一维与二维条形码图像处理库。它最初是从Java ZXing库移植而来的,但经过进一步开发,现在在运行时和检测性能方面有了许多改进。它可以读取和写入多种格式的条形码。包括工业DM码、RQ码、以及其他常见的各种一维条形码。zbar也是一个和zxing-c++一样的c++解码库,但是zbar在解码性能,种类上都远远没有zxing好,在检测多个二维码的情况下zbar只要几帧但是zxing可以跑到60帧以上,下面说一下zxing c++源码获取和库的使用。
源码路径:
zxing-cpp/zxing-cpp: C++ port of ZXing (github.com)https://github.com/zxing-cpp/zxing-cpp下载解压完
进入目录
mkdir build install && cd build
cmake -DCMAKE_INSTALL_PREFIX=../install ../
make -j8
make install
生成库文件在install下面,可以运行build/example目录下的测试代码,查看是否编译成功。
opencv下运行代码
在使用opencv 把图片格式转换成灰度图,解码速度比直接传入BGR图片快十多帧。
auto zimage = ZXing::ImageView(gray.data, width, height, ZXing::ImageFormat::Lum); //设置输入图片类型 GRAY
auto options = ZXing::ReaderOptions().setFormats(ZXing::BarcodeFormat::QRCode); //设置解码类型 Any 全部
auto barcodes = ZXing::ReadBarcodes(zimage,options);
for (const auto& barcode : barcodes){
auto pos = barcode.position();
auto zx2cv = [](ZXing::PointI p) { return cv::Point(p.x, p.y); };
auto contour = std::vector<cv::Point>{zx2cv(pos[0]), zx2cv(pos[1]), zx2cv(pos[2]), zx2cv(pos[3])};
const auto* pts = contour.data();
int npts = contour.size();
cv::polylines(ori_img, &pts, &npts, 1, true, CV_RGB(0, 255, 0),4);
cv::putText(ori_img, barcode.text(), zx2cv(pos[3]) + cv::Point(0, 20), cv::FONT_HERSHEY_DUPLEX, 0.5, CV_RGB(255, 0, 0));
}
解码当张图片速度是zbar的十倍
下面是使用多线程解码二维码视频的完整代码。
#include "zbar.h"
#include "ThreadPool.hpp"
#include <opencv2/opencv.hpp>
#include <iostream>
#include <stdio.h>
#include <fstream>
#include <queue>
#include <string>
#include <vector>
#include <sys/time.h>
#include "ZXing/ReadBarcode.h"
using namespace std;
using namespace cv;
using std::queue;
using std::time;
using std::time_t;
vector<string> Data_Array;
Scalar color;
class zbar_lite
{
private:
int ret;
int width = 0;
int height = 0;
public:
Mat ori_img;
int Read_Decode_Pic();
zbar_lite();
~zbar_lite();
};
zbar_lite::zbar_lite()
{
/* Create the neural network */
printf("Loading mode...\n");
}
zbar_lite::~zbar_lite()
{
printf("Loading delete...\n");
}
int zbar_lite::Read_Decode_Pic()
{
cv::Mat gray;
if (ori_img.channels() == 1) gray = ori_img;
else cv::cvtColor(ori_img, gray, COLOR_BGR2GRAY);
int width = gray.cols;
int height = gray.rows;
auto zimage = ZXing::ImageView(gray.data, width, height, ZXing::ImageFormat::Lum); //设置输入图片类型 GRAY
auto options = ZXing::ReaderOptions().setFormats(ZXing::BarcodeFormat::QRCode); //设置解码类型 Any 全部
auto barcodes = ZXing::ReadBarcodes(zimage,options);
for (const auto& barcode : barcodes){
auto pos = barcode.position();
auto zx2cv = [](ZXing::PointI p) { return cv::Point(p.x, p.y); };
auto contour = std::vector<cv::Point>{zx2cv(pos[0]), zx2cv(pos[1]), zx2cv(pos[2]), zx2cv(pos[3])};
const auto* pts = contour.data();
int npts = contour.size();
cv::polylines(ori_img, &pts, &npts, 1, true, CV_RGB(0, 255, 0),4);
cv::putText(ori_img, barcode.text(), zx2cv(pos[3]) + cv::Point(0, 20), cv::FONT_HERSHEY_DUPLEX, 0.5, CV_RGB(255, 0, 0));
}
return 0;
}
int main(int argc, char** argv)
{
if(argc < 2){
std::cout << "Usage: ./test_zbar barcode.png" << std::endl;
return -1;
}
char *image_name = argv[1];
cv::VideoCapture capture;
capture.open(image_name);
int n = 12, frames = 0;
printf("线程数:\t%d\n", n);
vector<zbar_lite *> rkpool;
// 线程池
dpool::ThreadPool pool(n);
// 线程队列
queue<std::future<int>> futs;
for (int i = 0; i < n; i++)
{
zbar_lite *ptr = new zbar_lite();
rkpool.push_back(ptr);
capture >> ptr->ori_img;
futs.push(pool.submit(&zbar_lite::Read_Decode_Pic, &(*ptr)));
// futs.push(pool.submit(Read_Decode_Pic, image));
}
struct timeval time;
gettimeofday(&time, nullptr);
auto initTime = time.tv_sec * 1000 + time.tv_usec / 1000;
gettimeofday(&time, nullptr);
long tmpTime, lopTime = time.tv_sec * 1000 + time.tv_usec / 1000;
while (capture.isOpened())
{
if (futs.front().get() != 0) break;
futs.pop();
imshow("Camera FPS", rkpool[frames % n]->ori_img);
if (cv::waitKey(1) == 'q') // 延时1毫秒,按q键退出
break;
if(!capture.read(rkpool[frames % n]->ori_img)) break;
// 检测图像中的码(解码)
futs.push(pool.submit(&zbar_lite::Read_Decode_Pic, &(*rkpool[frames++ % n])));
if(frames % 60 == 0){
gettimeofday(&time, nullptr);
tmpTime = time.tv_sec * 1000 + time.tv_usec / 1000;
printf("60帧平均帧率:\t%f帧\n", 60000.0 / (float)(tmpTime - lopTime));
lopTime = tmpTime;
}
}
gettimeofday(&time, nullptr);
printf("\n平均帧率:\t%f帧\n", float(frames) / (float)(time.tv_sec * 1000 + time.tv_usec / 1000 - initTime + 0.0001) * 1000.0);
while (!futs.empty())
{
if (futs.front().get())
break;
futs.pop();
}
for (int i = 0; i < n; i++)
delete rkpool[i];
capture.release();
cv::destroyAllWindows();
return 0;
}
运行帧率
60帧平均帧率: 133.037694帧
60帧平均帧率: 151.515152帧
60帧平均帧率: 136.986301帧
60帧平均帧率: 135.440181帧
60帧平均帧率: 145.278450帧
60帧平均帧率: 142.180095帧
60帧平均帧率: 126.582278帧
60帧平均帧率: 129.589633帧
60帧平均帧率: 121.212121帧
60帧平均帧率: 98.360656帧
60帧平均帧率: 70.671378帧
60帧平均帧率: 58.765916帧
60帧平均帧率: 55.970149帧
60帧平均帧率: 75.662043帧
60帧平均帧率: 56.818182帧
60帧平均帧率: 49.627792帧
60帧平均帧率: 51.194539帧
60帧平均帧率: 49.140049帧
60帧平均帧率: 59.464817帧
60帧平均帧率: 63.559322帧
60帧平均帧率: 53.908356帧
60帧平均帧率: 54.298643帧
平均帧率: 88.158511帧
在多二维码的情况下可以到60多帧
后续使用 yolov5+zxing可实现在多二维码情况下120帧
完整工程
tickley/QRcode (github.com)https://github.com/tickley/QRcode