HDU 6033 (2017 多校训练赛1 1001) Add More Zero

本文介绍了一个算法问题,即给定一个正整数m,求解2^m-1用10进制表示的最大长度k。通过简单的数学转换,将问题转化为k<m*log10(2),并提供了一个C语言实现的示例程序。

2017 Multi-University Training Contest - Team 1 1001

Add More Zero

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 0    Accepted Submission(s): 0


Problem Description
There is a youngster known for amateur propositions concerning several mathematical hard problems.

Nowadays, he is preparing a thought-provoking problem on a specific type of supercomputer which has ability to support calculations of integers between 0 and (2m1) (inclusive).

As a young man born with ten fingers, he loves the powers of 10 so much, which results in his eccentricity that he always ranges integers he would like to use from 1to 10k (inclusive).

For the sake of processing, all integers he would use possibly in this interesting problem ought to be as computable as this supercomputer could.

Given the positive integer m, your task is to determine maximum possible integer k that is suitable for the specific supercomputer.
 

Input
The input contains multiple test cases. Each test case in one line contains only one positive integer m, satisfying 1m105.
 

Output
For each test case, output "Case #xy" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.
 

Sample Input
1 64
 

Sample Output
Case #1: 0 Case #2: 19
 

题意:
给出一个m 求 2^m-1 用10进制表示最大长度

分析:

10^k<=2^m-1
log 10^k<=log 2^m-1
log10^k<log2^m
k<mlog2/log10
k<m*log10(2)
int main()
{
    long long n,cas=0;
    while(scanf("%lld",&n)==1)
    {
    printf("Case #%lld: %lld\n",++cas, (long long)(n*log10(2)));
    }
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值