LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation

LiteFlowNet是一种用于光流估计的轻量化CNN,通过级联流推断和特征驱动的局部卷积层改善异常值和模糊边界,解决了大位移和精细细节的问题。它具有高效的金字塔特征提取结构,使用特征扭曲代替图像扭曲,降低了参数数量,提高了实时性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract

 flownet效果好,但是需要160M的参数。创新点:1.使得前向传播预测光流更为效率通过在每一个金字塔层添加一个串联网络。2.添加一个novel  flow regularization layer来改善异常值和模糊边界的情况,这个层是通过使用feature-driven local convolution来实现的。3.我们的网络拥有一个有效的金字塔特征提取结构,并采用feature warping而不是像FlowNet2中所做的image warping。

1. Introduction

 光流估计是计算机视觉中的一个长期存在的问题。因为众所周知的孔径问题,光流无法被直接测量。因此,常规的解决方法为:在由粗到细的框架中通过能量最小化来求解[]。然而,基于此的光流计算技术因其复杂的能量优化问题,无法用于实时的应用中。

FlowNet以及Flownet2为使用卷积神经预测光流场奠定了基础,尤其是flownet2已经达到了传统变分法的精度,然而运行速度却提升了多个数量级。为了提高精度,flownet2使用多个flownet模型进行级联,每个级联中的flownet模型通过处理第一张图与变形之后第二张图之间增量来改善上一层的光流场。因此,flownet2中包含大约160m的参数,对于移动客户端来说,存储异常困难。SPyNet通过对金字塔层中的图片进行变形,使得网络的参数缩减到1.2m。然而损失了精度,只达到flownet的精度。

3. LiteFlowNet

 LiteFlowNet由两个紧凑的子网络组成,它们专门用于金字塔特征提取和光流估计

NetC: transforms any given image pair into two pyramids of multi-scale high-dimensional features

NetE :consists of cascaded flow inference and regularization modules that estimate coarse-to-fine flow fields.
 

Pyramidal Feature Extraction:NETC为一个两输入的网络,两个网络共享滤波器权重。这两个网络的作用类似于特征描述符(feature descriptor),把一张图片I转换成一个pyramid of multi-scale high-dimensional features{F_{k}(I)},从k=1为全分辨率,到k=L的最低分辨率。以下图整个为一个pyramid of multi-scale high-dimensional feature。以后为了方便,使用F_{i}来表示图片I_{i}的CNN特征,省略下标k,当讨论对于一个 pyramid level(例如{F_{2}(I)})的操作时,所有的 pyramid level都应用于相同的操作。

### YOLO Pose Estimation Implementation and Usage #### Overview of YOLOv8-Pose Model The YOLOv8-Pose model is designed specifically for human pose estimation tasks, which involves detecting keypoints on the human body such as joints. This allows applications to understand the posture or movement of individuals within images or video streams. For implementing and using this model, two primary components are involved: configuration files like `yolov8-pose.yaml` and pre-trained weights such as `yolov8n-pose.pt`. These elements define how the neural network operates during inference time[^1]. #### Configuration File (`yolov8-pose.yaml`) This YAML file contains essential parameters that dictate various aspects of the model architecture including input size, backbone structure, neck design (if any), head configurations, loss functions used, etc. It serves as a blueprint guiding both training processes when customizing models further and deployment scenarios where specific settings need adjustment based on application requirements. #### Pre-Trained Weights (`yolov8n-pose.pt`) Pre-trained weight files store learned parameter values after extensive training over large datasets. Utilizing these pretrained weights can significantly reduce development effort by leveraging existing knowledge captured through prior learning phases without needing additional data collection efforts or computational resources required for full-scale retraining sessions[^3]. To utilize the YOLOv8-Pose model effectively: ```python from ultralytics import YOLO model = YOLO('path/to/yolov8n-pose.pt') # Load pre-trained model with specified path. results = model.predict(source='image.jpg', save=True) # Perform prediction on an image source while saving results locally. ``` In addition to direct usage via Python scripts, integrating into larger systems often requires understanding potential limitations imposed due to experimental constraints mentioned earlier regarding lack of fine-tuning opportunities under certain conditions. #### Addressing Limitations Through Advanced Techniques While utilizing off-the-shelf solutions offers convenience, addressing inherent challenges associated with deep separable convolutions found in some architectures may require innovative approaches outlined elsewhere discussing lightweight slim-neck designs aimed at mitigating adverse effects caused by depthwise separable convolutional layers' shortcomings while maximizing their benefits[^4].
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值