Problem
DescriptionA number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
#include<stdio.h>
int Fn( int a,int b,int n )
{
int i=1,j=1,m;
int x=1,y=1;
if(n==1) return 1;
else if(n==2) return 1;
else
{
n=(n-2)%16; //判断周期(周期16)
while(n--)
{
x=((x*b)%7+(y*a)%7)%7;
m=x;x=y;y=m;
}
return m;
}
}
int main()
{
int a,b,n;
while(scanf("%d %d %d",&a,&b,&n)&&(a!=0&&b!=0&&n!=0))
printf("%d\n",Fn(a,b,n));
return 0;
}
本文探讨了一种特定的周期性数列计算方法,通过分析数列的周期性特征,提出了一个高效的算法来计算数列中任意一项的值。该算法适用于给定参数A、B和n的情况下,快速计算数列f(n)的值,其中f(n)=(A*f(n-1)+B*f(n-2))mod7。通过对周期性的利用,避免了传统递归或迭代方法的效率瓶颈。
392

被折叠的 条评论
为什么被折叠?



