Description
A sequence of n > 0 integers is called a jolly jumper if the absolute values of the difference between successive elements take on all the values 1 through n-1. For instance,
1 4 2 3
is a jolly jumper, because the absolutes differences are 3, 2, and 1 respectively. The definition implies that any sequence of a single integer is a jolly jumper. You are to write a program to determine whether or not each of a number of sequences is a jolly jumper.
1 4 2 3
is a jolly jumper, because the absolutes differences are 3, 2, and 1 respectively. The definition implies that any sequence of a single integer is a jolly jumper. You are to write a program to determine whether or not each of a number of sequences is a jolly jumper.
Input
Each line of input contains an integer n < 3000 followed by n integers representing the sequence.
Output
For each line of input, generate a line of output saying "Jolly" or "Not jolly".
Sample Input
4 1 4 2 3 5 1 4 2 -1 6
Sample Output
Jolly Not jolly
第一次写博客,比较简单的一题,不过学会了使用set,还是有点小成就的!
#include <iostream> #include <cmath> #include <vector> #include <set> #include <algorithm> #include <bitset> using namespace std; int main(){ int num, index, temp; while( scanf( "%d", &num ) != EOF ){ if( num == 1 ){ scanf( "%d", &temp ); printf( "Jolly/n" ); }else{ int *array = new int[ num ]; set< int > test; for( index = 0; index < num; ++index ){ scanf( "%d", array + index ); } for( index = 0; index < num - 1; ++index ){ if( abs( *( array + index + 1 ) - *( array + index ) ) < num && *( array + index + 1 ) != *( array + index ) ){ test.insert( abs( *( array + index + 1 ) - *( array + index ) ) ); } } if( test.size() == num - 1 ){ printf( "Jolly/n" ); }else{ printf( "Not jolly/n" ); } } } return 0; }