POJ1155---TELE(树形dp,背包)

本文探讨了电视网络如何通过优化信号传输路径,最大化在不亏损的情况下允许观看重要足球比赛的用户数量。利用动态规划算法解决该问题,确保网络收益的同时满足用户需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description
A TV-network plans to broadcast an important football match. Their network of transmitters and users can be represented as a tree. The root of the tree is a transmitter that emits the football match, the leaves of the tree are the potential users and other vertices in the tree are relays (transmitters).
The price of transmission of a signal from one transmitter to another or to the user is given. A price of the entire broadcast is the sum of prices of all individual signal transmissions.
Every user is ready to pay a certain amount of money to watch the match and the TV-network then decides whether or not to provide the user with the signal.
Write a program that will find the maximal number of users able to watch the match so that the TV-network’s doesn’t lose money from broadcasting the match.

Input
The first line of the input file contains two integers N and M, 2 <= N <= 3000, 1 <= M <= N-1, the number of vertices in the tree and the number of potential users.
The root of the tree is marked with the number 1, while other transmitters are numbered 2 to N-M and potential users are numbered N-M+1 to N.
The following N-M lines contain data about the transmitters in the following form:
K A1 C1 A2 C2 … AK CK
Means that a transmitter transmits the signal to K transmitters or users, every one of them described by the pair of numbers A and C, the transmitter or user’s number and the cost of transmitting the signal to them.
The last line contains the data about users, containing M integers representing respectively the price every one of them is willing to pay to watch the match.

Output
The first and the only line of the output file should contain the maximal number of users described in the above text.

Sample Input

9 6
3 2 2 3 2 9 3
2 4 2 5 2
3 6 2 7 2 8 2
4 3 3 3 1 1

Sample Output

5

Source

dp[u][i] 表示 以u为根的子树,取i个叶子节点,可以得到的最大价值
dp[u][i]=max(dp[u][i],dp[u][j]+dp[v][ij]cost[u][v])

/*************************************************************************
    > File Name: POJ1155.cpp
    > Author: ALex
    > Mail: zchao1995@gmail.com 
    > Created Time: 2015年05月10日 星期日 20时13分27秒
 ************************************************************************/

#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#include <set>
#include <vector>

using namespace std;

const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;

static const int N = 3010;
int dp[N][N];
int val[N];
vector <PLL> edge[N];
int sum[N];
int n, m;

void dfs(int u) {
    int size = edge[u].size();
    if (size == 0) {
        sum[u] = 1;
        return;
    }
    for (int i = 0; i < size; ++i) {
        int v = edge[u][i].first;
        dfs(v);
        sum[u] += sum[v];
    }
}

void DP(int u) {
    int size = edge[u].size();
    if (size == 0) {
        dp[u][1] = val[u - n + m];
        sum[u] = 1;
        return;
    }
    for (int i = 0; i < size; ++i) {
        int v = edge[u][i].first;
        DP(v);
        sum[u] += sum[v];
    }
    dp[u][0] = 0;
    for (int i = 0; i < size; ++i) {
        int w = edge[u][i].second;
        int v = edge[u][i].first;
        for (int j = sum[u]; j >= 1; --j) {
            for (int k = 0; k <= sum[v] && k <= j; ++k) {
                if (j < k) {
                    continue;
                }
                dp[u][j] = max(dp[u][j], dp[u][j - k] + dp[v][k] - w);
            }
        }
    }
}

int main() {
    while (~scanf("%d%d", &n, &m)) {
        for (int i = 1; i <= n; ++i) {
            edge[i].clear();
        }
        for (int i = 1; i <= n - m; ++i) {
            int size;
            int v, w;
            scanf("%d", &size);
            for (int j = 1; j <= size; ++j) {
                scanf("%d%d", &v, &w);
                edge[i].push_back(make_pair(v, w));
            }
        }
        for (int i = 1; i <= m; ++i) {
            scanf("%d", &val[i]);
        }
        memset(sum, 0, sizeof(sum));
        memset(dp, -inf, sizeof(dp));
        DP(1);
        int ans = 0;
        for (int i = m; i >= 0; --i) {
            if (dp[1][i] >= 0) {
                ans = i;
                break;
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值