Codeforces Beta Round #57 (Div. 2)E---Enemy is weak(树状数组+离散化)

博客介绍了如何利用树状数组和离散化策略来计算罗马军队中满足特定条件的三元组数量,以此评估军队的弱点。通过输入的士兵力量值,计算满足i < j < k且ai > aj > ak的三元组数量,由于力量值各不相同,可以有效找出军队的潜在问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Romans have attacked again. This time they are much more than the Persians but Shapur is ready to defeat them. He says: “A lion is never afraid of a hundred sheep”.

Nevertheless Shapur has to find weaknesses in the Roman army to defeat them. So he gives the army a weakness number.

In Shapur’s opinion the weakness of an army is equal to the number of triplets i, j, k such that i < j < k and ai > aj > ak where ax is the power of man standing at position x. The Roman army has one special trait — powers of all the people in it are distinct.

Help Shapur find out how weak the Romans are.
Input

The first line of input contains a single number n (3 ≤ n ≤ 106) — the number of men in Roman army. Next line contains n different positive integers ai (1 ≤ i ≤ n, 1 ≤ ai ≤ 109) — powers of men in the Roman army.
Output

A single integer number, the weakness of the Roman army.

Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cout (also you may use %I64d).
Sample test(s)
Input

3
3 2 1

Output

1

Input

3
2 3 1

Output

0

Input

4
10 8 3 1

Output

4

Input

4
1 5 4 3

Output

1

两次树状数组维护,第一次维护求出每一个位置上的逆序数的对数
第二次维护到目前为止,插入到树状数组上的逆序对的总数目
数据较大,离散化一下

/*************************************************************************
    > File Name: CF-57-E.cpp
    > Author: ALex
    > Mail: zchao1995@gmail.com 
    > Created Time: 2015年03月23日 星期一 21时00分16秒
 ************************************************************************/

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;

const int N = 1010000;
LL tree[N];
LL inver[N];
int val[N];
LL pre[N];
int xis[N];
int cnt;

int binsearch(int x)
{
    int l = 1;
    int r = cnt;
    int mid;
    while (l <= r)
    {
        mid = (l + r) >> 1;
        if (xis[mid] > x)
        {
            r = mid - 1;
        }
        else if (xis[mid] < x)
        {
            l = mid + 1;
        }
        else
        {
            break;
        }
    }
    return mid;
}

int lowbit(int x)
{
    return x & (-x);
}

void add(int x, int cnt)
{
    for (int i = x; i <= N; i += lowbit(i))
    {
        tree[i] += cnt;
    }
}

LL sum(int x)
{
    LL ans = 0;
    for (int i = x; i; i -= lowbit(i))
    {
        ans += tree[i];
    }
    return ans;
}

int main()
{
    int n;
    while (~scanf("%d", &n))
    {
        cnt = 0;
        LL ans = 0;
        memset(pre, 0, sizeof(pre));
        memset(inver, 0, sizeof(inver));
        memset(tree, 0, sizeof(tree));
        for (int i = 1; i <= n; ++i)
        {
            scanf("%d", &val[i]);
            xis[++cnt] = val[i];
        }
        sort(xis + 1, xis + 1 + cnt);
        cnt = unique(xis + 1, xis + 1 + cnt) - xis - 1;
        for (int i = 1; i <= n; ++i)
        {
            int x = binsearch(val[i]);
            add(x, 1);
            inver[i] = i - sum(x);
            pre[i] = pre[i - 1] + inver[i];
        }
        memset(tree, 0, sizeof(tree));
        for (int i = 1; i <= n; ++i)
        {
            int x = binsearch(val[i]);
            add(x, inver[i]);
            ans += pre[i] - sum(x);
        }
        printf("%lld\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值