Description
There is an apple tree outside of kaka’s house. Every autumn, a lot of apples will grow in the tree. Kaka likes apple very much, so he has been carefully nurturing the big apple tree.
The tree has N forks which are connected by branches. Kaka numbers the forks by 1 to N and the root is always numbered by 1. Apples will grow on the forks and two apple won’t grow on the same fork. kaka wants to know how many apples are there in a sub-tree, for his study of the produce ability of the apple tree.
The trouble is that a new apple may grow on an empty fork some time and kaka may pick an apple from the tree for his dessert. Can you help kaka?
Input
The first line contains an integer N (N ≤ 100,000) , which is the number of the forks in the tree.
The following N - 1 lines each contain two integers u and v, which means fork u and fork v are connected by a branch.
The next line contains an integer M (M ≤ 100,000).
The following M lines each contain a message which is either
“C x” which means the existence of the apple on fork x has been changed. i.e. if there is an apple on the fork, then Kaka pick it; otherwise a new apple has grown on the empty fork.
or
“Q x” which means an inquiry for the number of apples in the sub-tree above the fork x, including the apple (if exists) on the fork x
Note the tree is full of apples at the beginning
Output
For every inquiry, output the correspond answer per line.
Sample Input
3
1 2
1 3
3
Q 1
C 2
Q 1
Sample Output
3
2
Source
POJ Monthly–2007.08.05, Huang, Jinsong
dfs改时间戳+树状数组
/*************************************************************************
> File Name: poj3321.cpp
> Author: ALex
> Mail: zchao1995@gmail.com
> Created Time: 2015年03月05日 星期四 16时17分37秒
************************************************************************/
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
const int N = 100100;
int tree[N];
int l[N];
int r[N];
int head[N];
int tot;
struct node
{
int next;
int to;
}edge[N << 1];
void addedge (int from, int to)
{
edge[tot].to = to;
edge[tot].next = head[from];
head[from] = tot++;
}
int lowbit (int x)
{
return x & (-x);
}
void add (int x, int val)
{
for (int i = x; i <= N; i += lowbit (i))
{
tree[i] += val;
}
}
int sum (int x)
{
int ans = 0;
for (int i = x; i; i -= lowbit (i))
{
ans += tree[i];
}
return ans;
}
void dfs (int u, int &cnt, int fa)
{
l[u] = ++cnt;
for (int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if (v == fa)
{
continue;
}
dfs (v, cnt, u);
}
r[u] = cnt;
}
int main ()
{
int n;
while (~scanf("%d", &n))
{
int u, v;
memset (tree, 0, sizeof(tree));
memset (head, -1, sizeof(head));
tot = 0;
for (int i = 1; i <= n - 1; ++i)
{
scanf("%d%d", &u, &v);
addedge (u, v);
addedge (v, u);
}
int cnt = 0;
dfs (1, cnt, -1);
for (int i = 1; i <= n; ++i)
{
add (l[i], 1);
}
int m;
char str[3];
scanf("%d", &m);
while (m--)
{
scanf("%s%d", str, &u);
if (str[0] == 'Q')
{
printf("%d\n", sum (r[u]) - sum(l[u] - 1));
}
else
{
int sta = sum (l[u]) - sum (l[u] - 1);
if (sta)
{
add (l[u], -1);
}
else
{
add (l[u], 1);
}
}
}
}
return 0;
}

本文介绍了一种针对苹果树模型的查询与更新算法。该算法利用深度优先搜索(DFS)进行时间戳修改,并结合树状数组实现快速查询与更新。具体地,通过遍历苹果树的每个节点并为其分配时间戳,可以高效地处理苹果数量的变化情况,包括新增苹果或摘取苹果等操作。此外,文章还提供了一个示例输入输出及完整的C++代码实现。
606

被折叠的 条评论
为什么被折叠?



