hdu4050----wolf5x

本文深入探讨了AI音视频处理领域中的关键技术,特别是视频分割与语义识别,详细解释了如何利用这些技术实现更智能的音视频处理应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

wolf5x

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 409    Accepted Submission(s): 253
Special Judge


Problem Description
There are n grids in a row. The coordinates of grids are numbered from x=1 to x=n. Someone starts from x=0. You can step forward with your left leg or right leg alternatively in turn.Namely,if you step forward with your left leg, then you must step with your right leg next. As you can not jump , only one leg is allowed to use each step. Every step you take is in the range of [A,B], inclusively; namely, every step you take is at most B units and at least A units.
Before you start to move, the grids will be initialized randomly with 4 states(0,1,2,3), and p[i][j] means the probability of ith grid initialized with state j. After initialization, the state of the grids will not change.

State 0 means you can't step into the correspoding grid.
State 1 means you can just step into the grid with your left leg.
State 2 means you can just step into the grid with your right leg.
State 3 means you can step into the grid with either of your legs,and the next step,you can use any legs; namely you don't need to follow the rules above.
If x>n, then the grid can be stepped in with arbitrary method.means you can step at the place after the nth grid.
For every step,you will choose the “step method” with the minimum step length. Namely, if you can take the step of S units and S+1 units, you will choose the step of S units.
Until you can't step in any grids in front of you,or you have been in a grid x>n, you will stop.
Can you calculate the expectation of the steps when you stop?
 

Input
An integer T means the number of cases.T<=30
For each case,the first line is three integers n,A,B.
The next n lines,each line has 4 number p[i][0], p[i][1], p[i][2], p[i][3].
1 <= A <= B <= n<= 2000.
0 <= p[i][j] <= 1, p[i][0]+p[i][1]+p[i][2]+p[i][3] = 1.
 

Output
The expectation of the steps when you stop
you can assume that the relative epsilon is no more than 1e-6
 

Sample Input
  
9 2 1 1 0 0.5 0.5 0 0 0 1 0 2 1 1 0 0.5 0.5 0 0.5 0.5 0 0 2 1 2 0 0.5 0.5 0 0 0 1 0 2 1 2 0.2 0.3 0.4 0.1 0.15 0.2 0.25 0.4 3 1 10 0 0 0 1 0 0 0 1 0 0 0 1 3 1 1 0 0 0 1 0 0 0 1 0 0 0 1 3 2 2 0 0 0 1 0 0 0 1 0 0 0 1 3 3 3 0 0 0 1 0 0 0 1 0 0 0 1 3 1 2 0.0 0.3 0.6 0.1 0.1 0.2 0.3 0.4 0.5 0.4 0.1 0.0
 

Sample Output
  
2.00000000 1.50000000 2.50000000 2.46000000 4.00000000 4.00000000 2.00000000 2.00000000 2.80200000
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   4049  4043  4041  4044  4047 
 

还不是很懂这道题

/*************************************************************************
    > File Name: hdu4050.cpp
    > Author: ALex
    > Mail: 405045132@qq.com 
    > Created Time: 2015年01月01日 星期四 18时51分49秒
 ************************************************************************/

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 4010;
double p[N][4];
double dp[N][4];

int main()
{
	int t;
	scanf("%d", &t);
	while (t--)
	{
		int n, a, b;
		scanf("%d%d%d", &n, &a, &b);
		memset (dp, 0, sizeof(dp));
		memset (p, 0, sizeof(p));
		for (int i = n + 1; i <= n + a; ++i)
		{
			p[i][3] = 1;
		}
		for (int i = 1; i <= n; ++i)
		{
			scanf("%lf%lf%lf%lf", &p[i][0], &p[i][1], &p[i][2], &p[i][3]);
		}
		dp[0][3] = 1;
		for (int i = 0; i <= n; ++i)
		{
			double p1 = 1;
			double p2 = 1;
			double p3 = 1;
			for (int j = a; j <= b; ++j)
			{
				dp[i + j][1] += (dp[i][2] * p2 + dp[i][3] * p3) * p[i + j][1];
				dp[i + j][2] += (dp[i][1] * p1 + dp[i][3] * p3) * p[i + j][2];
				dp[i + j][3] += (dp[i][1] * p1 + dp[i][2] * p2 + dp[i][3] * p3) * p[i + j][3];
				p1 *= (p[i + j][0] + p[i + j][1]);
				p2 *= (p[i + j][0] + p[i + j][2]);
				p3 *= p[i + j][0];
			}
		}
		double ans = 0;
		for (int i = 1; i <= n + a; ++i)
		{
			for (int j = 1; j < 4; ++j)
			{
				ans += dp[i][j];
			}
		}
		printf("%.8f\n", ans);
	}
	return 0;
}


资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值