hdu2262——Where is the canteen

探讨了一个关于在校园中寻找食堂的问题,并采用概率动态规划的方法来解决该问题。通过建立方程组并使用高斯消元法求解,最终得到从任意位置到达食堂所需的平均步数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Where is the canteen

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1143    Accepted Submission(s): 327


Problem Description
After a long drastic struggle with himself, LL decide to go for some snack at last. But when steping out of the dormitory, he found a serious problem : he can't remember where is the canteen... Even worse is the campus is very dark at night. So, each time he move, he check front, back, left and right to see which of those four adjacent squares are free, and randomly walk to one of the free squares until landing on a canteen.
 

Input
Each case begin with two integers n and m ( n<=15,m<=15 ), which indicate the size of the campus. Then n line follow, each contain m characters to describe the map. There are 4 different type of area in the map:

'@' is the start location. There is exactly one in each case.
'#' is an impassible square.
'$' is a canteen. There may be more than one in the campus.
'.' is a free square.
 

Output
Output the expected number of moves required to reach a canteen, which accurate to 6 fractional digits. If it is impossible , output -1.
 

Sample Input
  
1 2 @ 22@.. 1 3 @#$
 

Sample Output
  
1.000000 4.000000 -1
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   2264  2259  2373  2257  2247 
 

概率dp 首先设 dp[i] 表示在位置i时,到达食堂需要的步数的期望值
dp[i] = (dp[x1] + ... + dp[xn]) / n + 1;  x1, x2, ...xn是i可以到达的点
 整理得
 dp[x1] + dp[x2] + .... + dp[xn] - n * dp[i] = -n;
于是对于所有的点都可以建立这样一个方程,而且存在环, 所以考虑用高斯消元
首先bfs下,然后去掉到不了的点,接着高消就行了

/*************************************************************************
    > File Name: hdu2262.cpp
    > Author: ALex
    > Mail: 405045132@qq.com 
    > Created Time: 2014年12月27日 星期六 14时22分14秒
 ************************************************************************/

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const double eps = 1e-12;

int n, m;
int dir[4][2] = {0, 1, 0, -1, 1, 0, -1, 0};
bool flag[20][20];
double mat[300][300];
double x[300];
char str[20][20];
bool free_x[300];

struct node
{
	int x, y;
};

bool is_inmat(int x, int y)
{
	if (x < 0 || y < 0 || x >= n || y >= m)
	{
		return false;
	}
	return true;
}

int sgn(double x)
{
	return (x > eps) - (x < -eps);
}

int gauss()
{
	int  k, max_r, col;
	int free_num = 0, free_index;
	int equ = n * m, var = n * m;
	memset (free_x, true, sizeof(free_x));
	for (k = col = 0; k < equ && col < var; ++k, ++col)
	{
		max_r = k;
		for (int i = k + 1; i < equ; ++i)
		{
			if (sgn(fabs(mat[i][col]) - fabs(mat[max_r][col])) > 0)
			{
				max_r = i;
			}
		}
		if (max_r != k)
		{
			for (int i = k; i < var + 1; ++i)
			{
				swap(mat[max_r][i], mat[k][i]);
			}
		}
		if (sgn(mat[k][col]) == 0)
		{
			--k;
			continue;
		}
		for (int i = k + 1; i < equ; ++i)
		{
			if (sgn(mat[i][col]) != 0)
			{
				double tx = (mat[i][col] / mat[k][col]);
				for (int j = col; j < var + 1; ++j)
				{
					mat[i][j] = mat[i][j] - tx * mat[k][j];
				}
			}
		}
	}
	for (int i = k; i < equ; ++i)
	{
		if (sgn(mat[i][col]) != 0)
		{
			return 0;
		}
	}
	if (k < var)
	{
		for (int i = k - 1; i >= 0; --i)
		{
			free_num = 0;
			for (int j = 0; j < var; ++j)
			{
				if (sgn(mat[i][j]) != 0 && free_x[j])
				{
					free_num++;
					free_index = j;
				}
			}
			if (free_num > 1)
			{
				continue;
			}
			double tmp = mat[i][var];
			for (int j = 0; j < var; ++j)
			{
				if (sgn(mat[i][j]) != 0 && j != free_index)
				{
					tmp -= mat[i][j] * x[j];
				}
			}
			x[free_index] = tmp / mat[i][free_index];
			free_x[free_index] = 0;
		}
		return var - k;
	}
	for (int i = var - 1; i >= 0; --i) //唯一解,回代
	{
		double tmp = mat[i][var];
		for (int j = i + 1; j < var; ++j)
		{
			if (sgn(mat[i][j]) != 0)
			{
				tmp -= mat[i][j] * x[j];
			}
		}
		x[i] = tmp / mat[i][i];
	}
	return 1;
}

void bfs()
{
	queue <node> qu;
	node tmp1, tmp2;
	while (!qu.empty())
	{
		qu.pop();
	}
	memset (flag, false, sizeof(flag));
	for (int i = 0; i < n; ++i)
	{
		for (int j = 0; j < m; ++j)
		{
			if (str[i][j] == '$')
			{
				tmp1.x = i;
				tmp1.y = j;
				qu.push(tmp1);
				flag[i][j] = 1;
			}
		}
	}
	while (!qu.empty())
	{
		tmp1 = qu.front();
		qu.pop();
		for (int i = 0; i < 4; ++i)
		{
			tmp2.x = tmp1.x + dir[i][0];
			tmp2.y = tmp1.y + dir[i][1];
			if (!is_inmat(tmp2.x, tmp2.y))
			{
				continue;
			}
			if (str[tmp2.x][tmp2.y] == '#')
			{
				continue;
			}
			if (!flag[tmp2.x][tmp2.y])
			{
				flag[tmp2.x][tmp2.y] = 1;
				qu.push(tmp2);
			}
		}
	}
}

int main()
{
	int sx, sy;
	while (~scanf("%d%d", &n, &m))
	{
		for (int i = 0; i < n; ++i)
		{
			scanf("%s", str[i]);
			for (int j = 0; j < m; ++j)
			{
				if (str[i][j] == '@')
				{
					sx = i;
					sy = j;
					break;
				}
			}
		}
		memset (mat, 0, sizeof(mat));
		bfs();
		if (!flag[sx][sy])
		{
			printf("-1\n");
			continue;
		}
		for (int i = 0; i < n; ++i)
		{
			for (int j = 0; j < m; ++j)
			{
				int cnt = 0;
				if (str[i][j] == '#')
				{
					continue;
				}
				if (str[i][j] == '$')
				{
					mat[i * m + j][i * m + j] = 1;
					mat[i * m + j][n * m] = 0;
				}
				else
				{
					for (int k = 0; k < 4; ++k)
					{
						int xx = i + dir[k][0];
						int yy = j + dir[k][1];
						if (!is_inmat(xx, yy) || !flag[xx][yy])
						{
							continue;
						}
						mat[i * m + j][xx * m + yy] = 1;
						cnt++;
					}
					mat[i * m + j][i * m + j] = -1.0 * cnt;
					mat[i * m + j][n * m] = -1.0 * cnt;
				}
			}
		}
		if (gauss())
		{
			printf("%.6f\n", x[sx * m + sy]);
			continue;
		}
		printf("-1\n");
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值