POJ3132——Sum of Different Primes

本文介绍了一种算法,用于计算特定正整数n可以由多少组不同的k个素数相加得到。通过使用动态规划的方法,该算法有效地解决了这一问题,并提供了一个具体的实现示例。
Sum of Different Primes
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 3243 Accepted: 2016

Description

A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.

When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.

Your job is to write a program that reports the number of such ways for the given n and k.

Input

The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.

Output

The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.

Sample Input

24 3 
24 2 
2 1 
1 1 
4 2 
18 3 
17 1 
17 3 
17 4 
100 5 
1000 10 
1120 14 
0 0

Sample Output

2 
3 
1 
0 
0 
2 
1 
0 
1 
55 
200102899 
2079324314

Source


类似于背包问题,不过有2个代价

设dp[i][j]表示 用j个素数表示出i这个数的方案数

dp[i][j] += dp[ i - prime][j - 1]

大家知道01背包优化到一维时体积需要逆序循环是因为 f[i][j] 需要由 f[i - 1][j - c]推得,而f[i - 1][j - c]又要存在dp[j - c]中,如果顺序循环,dp[j - c]中将存放f[i][j - c],所以就不对了,对于此题,我们其实已经将状态降到二维了(本来是三维),所以同样的,在循环体积时,需要逆序


#include <map>
#include <set>
#include <list>
#include <stack>
#include <queue>
#include <vector>
#include <cmath>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

__int64 dp[1200][16];
int tot;
int prime[1200];
bool valid[1200];

void get_prime()
{
	memset (valid, 0, sizeof(valid));
	for (int i = 2; i <= 1120; ++i)
	{
		valid[i] = 1;
	}
	for (int i = 2; i <= 1120; ++i)
	{
		if (valid[i])
		{
			if (1120 / i < i)
			{
				break;
			}
			for (int j = i * i; j <= 1120; j += i)
			{
				valid[j] = 0;
			}
		}
	}
	for (int i = 2; i <= 1120; ++i)
	{
		if (valid[i])
		{
			prime[++tot] = i;
		}
	}
}

int main()
{
	tot = 0;
	get_prime();
	int n, k;
	memset (dp, 0, sizeof(dp));
	dp[0][0] = 1;
	for (int l = 1; l <= tot; ++l)
	{
		for (int j = 1120; j >= 2; --j)
		{
			for (int i = 14; i >= 1; --i)
			{
				if (j < prime[l])
				{
					continue;
				}
				dp[j][i] += dp[j - prime[l]][i - 1];
			}
		}
	}
	while (~scanf("%d%d", &n, &k))
	{
		if (!n && !k)
		{
			break;
		}
		printf("%I64d\n", dp[n][k]);
	}
	return 0;
}


内容概要:本文系统介绍了标准化和软件知识产权的基础知识,涵盖标准化的基本概念、分类、标准代号、国际标准的采用原则及程度,重点讲解了信息技术标准化、ISO与IEC等国际标准化组织以及ISO9000和ISO/IEC15504等重要标准体系;在知识产权部分,详细阐述了知识产权的定义、分类及特点,重点分析了计算机软件著作权的主体、客体、权利内容、行使方式、保护期限及侵权认定,同时涉及商业秘密的构成与侵权形式、专利权的类型与申请条件,以及企业如何综合运用著作权、专利、商标和商业秘密等方式保护软件知识产权。; 适合人群:从事软件开发、项目管理、IT标准化或知识产权相关工作的技术人员与管理人员,以及备考相关资格考试的学习者;具备一定信息技术背景,希望系统掌握标准化与软件知识产权基础知识的专业人员。; 使用场景及目标:①帮助理解各类标准的分类体系及国际标准采用方式,提升标准化实践能力;②指导企业在软件研发过程中有效保护知识产权,规避法律风险;③为软件著作权登记、专利申请、技术保密等提供理论依据和操作指引。; 阅读建议:建议结合国家相关政策法规和实际案例进行深入学习,重点关注软件著作权与专利权的适用边界、标准制定流程及企业知识产权管理策略,强化理论与实践的结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值