POJ1157——LITTLE SHOP OF FLOWERS

通过解决一个复杂的排列问题,实现最优的花卉布局,最大化每朵花放入相应花瓶后的整体美学价值。
LITTLE SHOP OF FLOWERS
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 18481 Accepted: 8512

Description

You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.
 

V A S E S

1

2

3

4

5

Bunches

1 (azaleas)

723-5-2416

2 (begonias)

521-41023

3 (carnations)

-21

5-4-2020

According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

Input

  • The first line contains two numbers: F, V.
  • The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.


  • 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
  • F <= V <= 100 where V is the number of vases.
  • -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

Output

The first line will contain the sum of aesthetic values for your arrangement.

Sample Input

3 5
7 23 -5 -24 16
5 21 -4 10 23
-21 5 -4 -20 20

Sample Output

53

Source

IOI 1999

给出f朵花,v个花瓶,要把花都插到花瓶里去,而且花的顺序不能改变,编号小的在左边,每朵花放到花瓶里都会有一定的价值,问如何放才能产生最大的价值

我们设dp[i][j]表示处理到第i朵花,然后把第i朵花放到第j个花瓶里时所能获得的最大价值;
显然 dp[i][j]  = max(dp[i - 1][k]) + val[i][j],其中k< j  val[i][j]表示把第i朵花放到第j个花瓶里产生的价值
一开始初始化错了,然后WA了2次,不过初始化完全以后就AC了

#include <map>  
#include <set>  
#include <list>  
#include <stack>  
#include <queue>  
#include <vector>  
#include <cmath>  
#include <cstdio>  
#include <cstring>  
#include <iostream>  
#include <algorithm>  
  
using namespace std;

const int inf = -0x3f3f3f3f;
int dp[105][105];
int mat[105][105];

int main()
{
	int f, v;
	while (~scanf("%d%d", &f, &v))
	{
		memset (dp, inf, sizeof(dp));
		for (int i = 1; i <= f; ++i)
		{
			for (int j = 1; j <= v; ++j)
			{
				scanf("%d", &mat[i][j]);
			}
		}
		for (int i = 0; i <= v; ++i)
		{
			dp[0][i] = 0;
		}
		dp[1][1] = mat[1][1];
		for (int i = 1; i <= f; ++i)
		{
			for (int j = 1; j <= v; ++j)
			{
				for (int k = 1; k < j; ++k)
				{
					dp[i][j] = max(dp[i][j], dp[i - 1][k] + mat[i][j]);
				}
			}
		}
		int ans = inf;
		for (int i = 1; i <= v; ++i)
		{
			ans = max(ans, dp[f][i]);
		}
		printf("%d\n", ans);
	}
	return 0;
}


【多变量输入超前多步预测】基于CNN-BiLSTM的光伏功率预测研究(Matlab代码实现)内容概要:本文介绍了基于CNN-BiLSTM模型的多变量输入超前多步光伏功率预测方法,并提供了Matlab代码实现。该研究结合卷积神经网络(CNN)强大的特征提取能力与双向长短期记忆网络(BiLSTM)对时间序列前后依赖关系的捕捉能力,构建了一个高效的深度学习预测模型。模型输入包含多个影响光伏发电的气象与环境变量,能够实现对未来多个时间步长的光伏功率进行精确预测,适用于复杂多变的实际应用场景。文中详细阐述了数据预处理、模型结构设计、训练流程及实验验证过程,展示了该方法相较于传统模型在预测精度和稳定性方面的优势。; 适合人群:具备一定机器学习和深度学习基础,熟悉Matlab编程,从事新能源预测、电力系统分析或相关领域研究的研发人员与高校研究生。; 使用场景及目标:①应用于光伏电站功率预测系统,提升电网调度的准确性与稳定性;②为可再生能源并网管理、能量存储规划及电力市场交易提供可靠的数据支持;③作为深度学习在时间序列多步预测中的典型案例,用于科研复现与教学参考。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注数据归一化、CNN特征提取层设计、BiLSTM时序建模及多步预测策略的实现细节,同时可尝试引入更多外部变量或优化网络结构以进一步提升预测性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值