| Memory Limit: 32 MB |
In the following figure you can see a rectangular card. Thewidth of the card isW and length of the card is L and thicknessis zero. Four(x*x) squares are cut from the four corners of the cardshown by the black dotted lines. Then the card is folded along the magentalines to make a box without a cover.

Given the width and height of the box, you will have to findthe maximum volume of the box you can make for any value ofx.
Input
Input starts with an integer T (≤ 10000),denoting the number of test cases.
Each case starts with a line containing two real numbers LandW (0 < L, W < 100).
Output
For each case, print the case number and the maximum volumeof the box that can be made. Errors less than10-6 will beignored.
Sample Input |
Output for Sample Input |
|
3 2 10 3.590 2.719 8.1991 7.189 |
Case 1: 4.513804324 Case 2: 2.2268848896 Case 3: 33.412886 |
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define LL double
using namespace std;
double f(double l,double w)//必然和求导数有关,那么求完导数怎么求MAX V呢
{
double a,b,c,k;
a=12.0;b=-4.0*(l+w);c=l*w;//MAX V与所截得的X长度有关系,所以先求出X的值就解决了。求完导数剩下的一元二次方程,当根为0时取得极值。
k=-b-sqrt(b*b-4*a*c);//这里取得左根
k/=2*a;//K即为所求的X值。x=-b+-(sqrt(b^2-4ac))/2a;
return (l-2*k)*k*(w-2*k) ;
}
int main()
{
LL l,w,c,i,x,y;
int cla;
scanf("%lld",&cla);
for(int gr=1; gr<=cla; gr++)
{
printf("Case %d: ",gr);
scanf("%lf %lf",&l,&w);
printf("%lf\n",f(l,w));
}
return 0;
}
矩形纸板折叠成盒子的最大体积
本文探讨了如何通过编程求解矩形纸板裁剪并折叠成无盖盒子的问题,旨在寻找该盒子的最大体积。输入参数包括纸板的长和宽,通过数学方法确定最佳裁剪尺寸。
2238

被折叠的 条评论
为什么被折叠?



