Sorting It All Out
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 30086 | Accepted: 10400 |
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B,
B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted
will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters:
an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B3 2A<BB<A26 1A<Z
10 40
C<I
E<G
A<J
F<B
D<E
F<D
C<B
E<H
G<I
D<B
C<H
A<B
J<I
D<G
A<E
C<G
E<B
H<G
C<A
F<J
B<G
D<J
E<J
D<H
C<F
B<J
G<J
B<H
D<A
F<I
A<H
C<E
F<H
A<G
B<I
F<A
H<J
F<G
F<E
C<J0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined. Sorted sequence determined after 29 relations: CFDAEBHGJI. 这两天心思有点乱,积极改善!!题目大意逗弄错了 - -。 就是判断的输入的所有行里,每次输入是否会有上边的3种情况出现。 思路是: 通过每次输入进入fi()函数里判断当前的关系中有多少入度为零。如果当前0度的数目>1则不能判断各顺序 如果度数==0,则有环出现
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int du[400],d2[400],q[400],Map[400][400];
char s[80];
int fi(int n)
{
int i,j,k,m,pos,flag=1;
int c=0;
for(i=0;i<n;i++)
{
d2[i]=du[i];
}
for(i=0;i<n;i++)
{
m=0;
for(j=0;j<n;j++)
if(d2[j]==0)
{
m++;
pos=j;
}
if(m==0)
return 0;
if(m>1)
flag=-1;
q[c++]=pos;
d2[pos]=-1;<span id="transmark"></span>
for(j=0;j<n;j++)
if(Map[pos][j])
d2[j]--;
}
return flag;
}
int main()
{
int n,m,i,j,k,bj,x,y,z;
ios::sync_with_stdio(false);
while(cin>>n>>m&&n&&m)
{
z=bj=0;
memset(Map,0,sizeof(Map));
memset(du,0,sizeof(du));
for(i=1;i<=m;i++)
{
cin>>s;
if(bj)
continue;
x=s[0]-'A';
y=s[2]-'A';
if(Map[x][y]==0)
{
Map[x][y]=1;
du[y]++;
}
k=fi(n);
if( k==1 )
{
printf("Sorted sequence determined after %d relations: ",i);
for(int j=0;j<n;j++)
printf("%c",q[j]+'A');
printf(".\n");
bj=1;
}
else if(k==0)
{
printf("Inconsistency found after %d relations.\n",i);
bj=1;
}
}
if(!bj)
printf("Sorted sequence cannot be determined.\n");
}
return 0;
}