Ultra-QuickSort
| Time Limit: 7000MS | Memory Limit: 65536K | |
| Total Submissions: 46926 | Accepted: 17131 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is
sorted in ascending order. For the input sequence Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence
element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
#include<cstdio> #include<cstring> #include<iostream> using namespace std; int a[500010],b[500010]; long long ans; void mer(int s,int mid,int e) { int i=s,j=mid+1,k=0; while(i<=mid&&j<=e) { if(a[i]>a[j]) //一定是看小的a[i]是否>a[j],成立的话从i到mid 的a[i]也是一定大于a[j]. { ans+=mid-i+1; b[k++]=a[j++]; } else b[k++]=a[i++]; } while(i<=mid) b[k++]=a[i++]; while(j<=e) b[k++]=a[j++]; for(i=s,k=0;i<=e;i++,k++) a[i]=b[k]; } void fen(int s,int e) { if(s<e) { int mid=(s+e)/2; fen(s,mid);//分两部分不断递归 fen(mid+1,e); mer(s,mid,e); } } int main() { int n,m,i,j; ios::sync_with_stdio(false); while(cin>>n&&n) { ans=0; for(i=0;i<n;i++) { cin>>a[i]; } fen(0,n-1); cout<<ans<<endl; } return 0; }
本文介绍了一种名为Ultra-QuickSort的排序算法,并通过一个具体的实现案例详细解释了其工作原理。该算法通过对一系列整数进行相邻元素交换来达到排序的目的。文中还提供了完整的源代码,展示了如何计算完成排序所需的最小交换次数。
1626

被折叠的 条评论
为什么被折叠?



