算法<Array Partition I>

本文介绍了一种针对数组的特殊配对算法,通过将数组中的2N个元素合理配对,实现每对中较小元素之和的最大化。文章详细阐述了算法原理,并给出了一段简洁高效的Java代码实现。

这个题目的要求是给定一个数组,有2N个元素,将其划分为N对(每一对有两个元素),使得每一对中的最小的元素相加的总和最大,例如:

有一个数组:
s=a1+b1+a2+b2+a3+b(3)+…+an+bn;

我们的目标是将数组划分诸如:
(a1,b1),(a2,b2),(a3,b3),….(an,bn)
然后求:
Sm = min(a1, b1) + min(a2, b2) + … + min(an, bn)
假设对于每一组bi>=ai,Sm(Sm = a1 + a2 + … + an)的最大值就是我们的目标.

定义
1、Sa = a1 + b1 + a2 + b2 + … + an + bn,对于输入的数组来说Sa是一个常数;
2、di = |ai - bi|,Sd = d1 + d2 + … + dn
所以我们可以得到Sa=a1 + a1 + d1 + a2 + a2 + d2 + … + an + an + di = 2Sm + Sd => Sm = (Sa - Sd) / 2

因为Sa是一个常量,要使得Sm最大的话,我们就要使得Sd最小。
一个数组中如何求的Sd最小呢,假如这个数组是一个已排序的数组:
(a1<=b1<=a2<=b2,那么Sd=(b1-a1)+(b2-a2),下图形象地说明了这点:
这里写图片描述
代码实现:

  public int arrayPairSum(int[] nums) {
        Arrays.sort(nums);
        int result = 0;
        for (int i = 0; i < nums.length; i += 2) {
            result += nums[i];
        }
        return result;
    }
``` package oy.tol.tra; import java.util.function.Predicate; public class Algorithms { public static <T extends Comparable<T>> void reverse(T[] array) { int i = 0; int j = array.length - 1; while (i < j) { T temp = array[i]; array[i] = array[j]; array[j] = temp; i++; j--; } } public static <T extends Comparable<T>> void sort(T[] array) { boolean swapped; for (int i = 0; i < array.length - 1; i++) { swapped = false; for (int j = 0; j < array.length - 1 - i; j++) { if (array[j].compareTo(array[j + 1]) > 0) { T temp = array[j]; array[j] = array[j + 1]; array[j + 1] = temp; swapped = true; } } if (!swapped) break; } } public static <T extends Comparable<T>> int binarySearch(T aValue, T[] fromArray, int fromIndex, int toIndex) { int low = fromIndex; int high = toIndex ; while (low <= high) { int mid = low + (high - low) / 2; int cmp = fromArray[mid].compareTo(aValue); if (cmp < 0) { low = mid + 1; } else if (cmp > 0) { high = mid - 1; } else { return mid; } } return -1; } public static <E extends Comparable<E>> void fastSort(E[] array) { quickSort(array, 0, array.length - 1); } private static <E extends Comparable<E>> void quickSort(E[] array, int begin, int end) { if (begin < end) { int partitionIndex = partition(array, begin, end); quickSort(array, begin, partitionIndex - 1); quickSort(array, partitionIndex + 1, end); } } public static <T> int partition(T[] array, int count, Predicate<T> rule) { if (array == null || count <= 0) { return 0; // No elements to partition } int left = 0; // Pointer for elements that satisfy the rule int right = count - 1; // Pointer for elements that do not satisfy the rule while (left <= right) { // Move the left pointer to the right until an element does not satisfy the rule while (left <= right && rule.test(array[left])) { left++; } // Move the right pointer to the left until an element satisfies the rule while (left <= right && !rule.test(array[right])) { right--; } // Swap elements if pointers have not crossed if (left <= right) { T temp = array[left]; array[left] = array[right]; array[right] = temp; left++; right--; } } // Return the index of the first element that does not satisfy the rule return left; } }```The method partition(T[], int, Predicate<T>) in the type Algorithms is not applicable for the arguments (E[], int, int)Java(67108979)
03-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值