Spark2.1.1<scala版本不兼容问题>

本文记录了在使用Spark处理数据集时遇到的Task not serializable异常,详细展示了错误堆栈跟踪并分享了解决方案——确保Scala版本与Spark版本兼容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天在拆分以下数据集的时候

area,perimeter,compactness,lengthOfKernel,widthOfKernel,asymmetryCoefficient,lengthOfKernelGroove
15.26,14.84,0.871,5.763,3.312,2.221,5.22
14.88,14.57,0.8811,5.554,3.333,1.018,4.956
14.29,14.09,0.905,5.291,3.337,2.699,4.825
13.84,13.94,0.8955,5.324,3.379,2.259,4.805
16.14,14.99,0.9034,5.658,3.562,1.355,5.175
14.38,14.21,0.8951,5.386,3.312,2.462,4.956
14.69,14.49,0.8799,5.563,3.259,3.586,5.219
14.11,14.1,0.8911,5.42,3.302,2.7,5
16.63,15.46,0.8747,6.053,3.465,2.04,5.877
16.44,15.25,0.888,5.884,3.505,1.969,5.533
15.26,14.85,0.8696,5.714,3.242,4.543,5.314
14.03,14.16,0.8796,5.438,3.201,1.717,5.001
13.89,14.02,0.888,5.439,3.199,3.986,4.738
13.78,14.06,0.8759,5.479,3.156,3.136,4.872
13.74,14.05,0.8744,5.482,3.114,2.932,4.825
14.59,14.28,0.8993,5.351,3.333,4.185,4.781
13.99,13.83,0.9183,5.119,3.383,5.234,4.781
15.69,14.75,0.9058,5.527,3.514,1.599,5.046

我得到了这么一个错误:


Exception in thread "main" org.apache.spark.SparkException: Task not serializable
    at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298)
    at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:288)
    at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:108)
    at org.apache.spark.SparkContext.clean(SparkContext.scala:2101)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1950)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1965)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
	at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
	at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
	at homework.Seed$.main(Seed.scala:21)
	at homework.Seed.main(Seed.scala)
Caused by: java.io.NotSerializableException: java.lang.Object
Serialization stack:
	- object not serializable (class: java.lang.Object, value: java.lang.Object@118102ee)
	- element of array (index: 0)
	- array (class [Ljava.lang.Object;, size 1)
	- field (class: java.lang.invoke.SerializedLambda, name: capturedArgs, type: class [Ljava.lang.Object;)
	- object (class java.lang.invoke.SerializedLambda, SerializedLambda[capturingClass=class homework.Seed$, functionalInterfaceMethod=scala/Function1.apply:(Ljava/lang/Object;)Ljava/lang/Object;, implementation=invokeStatic homework/Seed$.$anonfun$main$2:(Ljava/lang/Object;Ljava/lang/String;)Lscala/collection/Iterable;, instantiatedMethodType=(Ljava/lang/String;)Lscala/collection/Iterable;, numCaptured=1])
	- writeReplace data (class: java.lang.invoke.SerializedLambda)
	- object (class homework.Seed$$$Lambda$3/2139501486, homework.Seed$$$Lambda$3/2139501486@446c3920)
	- field (class: org.apache.spark.rdd.RDD$$anonfun$flatMap$1$$anonfun$apply$6, name: cleanF$2, type: interface scala.Function1)
	- object (class org.apache.spark.rdd.RDD$$anonfun$flatMap$1$$anonfun$apply$6, <function3>)
	- field (class: org.apache.spark.rdd.MapPartitionsRDD, name: f, type: interface scala.Function3)
	- object (class org.apache.spark.rdd.MapPartitionsRDD, MapPartitionsRDD[3] at flatMap at Seed.scala:21)
	- field (class: org.apache.spark.rdd.RDD$$anonfun$collect$1, name: $outer, type: class org.apache.spark.rdd.RDD)
    - object (class org.apache.spark.rdd.RDD$$anonfun$collect$1, <function0>)
	- field (class: org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13, name: $outer, type: class org.apache.spark.rdd.RDD$$anonfun$collect$1)
    - object (class org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13, <function1>)
    at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
    at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:46)
    at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100)
    at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:295)
    ... 12 more

我的代码是这样的

case class SEED(area: Double, perimeter: Double, compactness: Double, lengthOfKernel: Double,
                widthOfKernel: Double, asymmetryCoefficient: Double, lengthOfKernelGroove: Double)

object Seed {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[2]").setAppName("filter")
    val sc = new SparkContext(conf)
    val root = Seed.getClass.getResource("/")
    val data = sc.textFile(root + "seeds.csv")

    val regex ="""^\d""".r
    val result = data.filter(regex.findFirstIn(_)!=None)
      .flatMap { str => {
        val info = str.split(",")
        if (info(0).toDouble > 15)
          Some(SEED(info(0).toDouble, info(1).toDouble, info(2).toDouble, info(3).toDouble, info(4).toDouble, info(5).toDouble, info(6).toDouble))
        else
          None
      }
      }
    result.collect().foreach(println)

  }
}

仔细检查代码,并没有发现什么错误,后来经过经过排查,是我使用的scala版本和spark的版本不兼容导致的,我使用的是spark

 <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>

scala2.12.2

spark2.1.1使用scala2.11.8编译的,将scalaSDK换成2.11.8问题得到解决

下面给出spark2.1.1编译的相关的所有版本信息:

<properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
    <java.version>1.7</java.version>
    <maven.version>3.3.9</maven.version>
    <sbt.project.name>spark</sbt.project.name>
    <slf4j.version>1.7.16</slf4j.version>
    <log4j.version>1.2.17</log4j.version>
    <hadoop.version>2.2.0</hadoop.version>
    <protobuf.version>2.5.0</protobuf.version>
    <yarn.version>${hadoop.version}</yarn.version>
    <flume.version>1.6.0</flume.version>
    <zookeeper.version>3.4.5</zookeeper.version>
    <curator.version>2.4.0</curator.version>
    <hive.group>org.spark-project.hive</hive.group>
    <!-- Version used in Maven Hive dependency -->
    <hive.version>1.2.1.spark2</hive.version>
    <!-- Version used for internal directory structure -->
    <hive.version.short>1.2.1</hive.version.short>
    <derby.version>10.12.1.1</derby.version>
    <parquet.version>1.8.1</parquet.version>
    <hive.parquet.version>1.6.0</hive.parquet.version>
    <jetty.version>9.2.16.v20160414</jetty.version>
    <javaxservlet.version>3.1.0</javaxservlet.version>
    <chill.version>0.8.0</chill.version>
    <ivy.version>2.4.0</ivy.version>
    <oro.version>2.0.8</oro.version>
    <codahale.metrics.version>3.1.2</codahale.metrics.version>
    <avro.version>1.7.7</avro.version>
    <avro.mapred.classifier>hadoop2</avro.mapred.classifier>
    <jets3t.version>0.7.1</jets3t.version>
    <aws.kinesis.client.version>1.6.1</aws.kinesis.client.version>
    <!-- the producer is used in tests -->
    <aws.kinesis.producer.version>0.10.2</aws.kinesis.producer.version>
    <!--  org.apache.httpcomponents/httpclient-->
    <commons.httpclient.version>4.5.2</commons.httpclient.version>
    <commons.httpcore.version>4.4.4</commons.httpcore.version>
    <!--  commons-httpclient/commons-httpclient-->
    <httpclient.classic.version>3.1</httpclient.classic.version>
    <commons.math3.version>3.4.1</commons.math3.version>
    <!-- managed up from 3.2.1 for SPARK-11652 -->
    <commons.collections.version>3.2.2</commons.collections.version>
    <scala.version>2.11.8</scala.version>
    <scala.binary.version>2.11</scala.binary.version>
    <codehaus.jackson.version>1.9.13</codehaus.jackson.version>
    <fasterxml.jackson.version>2.6.5</fasterxml.jackson.version>
    <snappy.version>1.1.2.6</snappy.version>
    <netlib.java.version>1.1.2</netlib.java.version>
    <calcite.version>1.2.0-incubating</calcite.version>
    <commons-codec.version>1.10</commons-codec.version>
    <commons-io.version>2.4</commons-io.version>
    <!-- org.apache.commons/commons-lang/-->
    <commons-lang2.version>2.6</commons-lang2.version>
    <!-- org.apache.commons/commons-lang3/-->
    <commons-lang3.version>3.5</commons-lang3.version>
    <datanucleus-core.version>3.2.10</datanucleus-core.version>
    <janino.version>3.0.0</janino.version>
    <jersey.version>2.22.2</jersey.version>
    <joda.version>2.9.3</joda.version>
    <jodd.version>3.5.2</jodd.version>
    <jsr305.version>1.3.9</jsr305.version>
    <libthrift.version>0.9.3</libthrift.version>
    <antlr4.version>4.5.3</antlr4.version>
    <jpam.version>1.1</jpam.version>
    <selenium.version>2.52.0</selenium.version>
    <paranamer.version>2.8</paranamer.version>
    <maven-antrun.version>1.8</maven-antrun.version>
    <commons-crypto.version>1.0.0</commons-crypto.version>

    <test.java.home>${java.home}</test.java.home>
    <test.exclude.tags></test.exclude.tags>

    <!-- When using different JDKs for the build, we can't use Zinc for the jdk8 part. -->
    <useZincForJdk8>true</useZincForJdk8>

    <!-- Package to use when relocating shaded classes. -->
    <spark.shade.packageName>org.spark_project</spark.shade.packageName>

    <!-- Modules that copy jars to the build directory should do so under this location. -->
    <jars.target.dir>${project.build.directory}/scala-${scala.binary.version}/jars</jars.target.dir>

    <!-- Allow modules to enable / disable certain build plugins easily. -->
    <build.testJarPhase>prepare-package</build.testJarPhase>
    <build.copyDependenciesPhase>none</build.copyDependenciesPhase>

    <!--
      Dependency scopes that can be overridden by enabling certain profiles. These profiles are
      declared in the projects that build assemblies.

      For other projects the scope should remain as "compile", otherwise they are not available
      during compilation if the dependency is transivite (e.g. "graphx/" depending on "core/" and
      needing Hadoop classes in the classpath to compile).
    -->
    <flume.deps.scope>compile</flume.deps.scope>
    <hadoop.deps.scope>compile</hadoop.deps.scope>
    <hive.deps.scope>compile</hive.deps.scope>
    <parquet.deps.scope>compile</parquet.deps.scope>
    <parquet.test.deps.scope>test</parquet.test.deps.scope>

    <!--
      Overridable test home. So that you can call individual pom files directly without
      things breaking.
    -->
    <spark.test.home>${session.executionRootDirectory}</spark.test.home>

    <PermGen>64m</PermGen>
    <MaxPermGen>512m</MaxPermGen>
    <CodeCacheSize>512m</CodeCacheSize>
  </properties>

版本兼容问题真的特别特别重要!!!!!!

<think>好的,我现在需要解决用户在Maven项目中遇到的Jakarta Annotation依赖版本2.1.1报错的问题。首先,用户提到了引用[1]中的依赖配置,可能他们在使用这个版本时遇到了错误。我需要先了解常见的导致依赖错误的原因,比如版本不存在、与其他依赖冲突,或者仓库配置问题。 首先,我应该检查Jakarta Annotation API的2.1.1版本是否真的存在。访问Maven中央仓库网站,搜索jakarta.annotation-api,查看可用的版本列表。如果2.1.1不存在,那用户可能是错误地引用了这个版本号,需要更正为正确的版本。例如,可能用户记错了,实际最新版本2.1.0或其他。 接下来,如果版本号正确,可能是依赖配置有误。比如groupId是否正确,或者是否有拼写错误。用户提供的引用[1]中的groupId是jakarta.annotation,artifactId是jakarta.annotation-api,这看起来是正确的。但版本号需要确认。 另外,可能用户的环境问题,比如本地Maven仓库没有正确下载该依赖,或者网络问题导致下载失败。这时候可以建议用户清理本地仓库并重新构建项目,或者检查网络设置。 如果版本确实存在,但与其他依赖存在冲突,可能需要排除冲突的依赖。用户需要检查依赖树,使用mvn dependency:tree命令来查看是否有版本冲突。例如,另一个依赖可能引入了不同版本的jakarta.annotation-api,导致冲突。 另外,用户可能需要升级到更高版本,比如jakarta.annotation-api的2.1.2或更高,如果存在的话。或者,可能用户的项目中使用了其他Jakarta EE组件,需要统一版本号,确保所有Jakarta依赖的版本兼容。 参考引用[2]中的例子,用户之前可能升级了jakarta.servlet-api到6.0.0,所以可能也需要将annotation-api升级到对应的版本。Jakarta的各个组件通常有统一的版本号,比如Jakarta EE 9使用版本2.0.0,Jakarta EE 10使用3.0.0等。如果用户的其他依赖使用较新的版本,而annotation-api的2.1.1可能不兼容,导致错误。 因此,可能的解决方案包括:确认正确的版本号是否存在,更正pom.xml中的版本;检查依赖冲突并排除;升级到兼容版本;或者检查Maven配置和网络问题。需要一步步引导用户进行排查,确保依赖配置正确,版本兼容,并且能够正确下载。</think>为了解决Jakarta Annotation依赖版本$2.1.1$报错的问题,请按照以下步骤排查和修复: --- ### 一、验证依赖配置正确性 1. **检查版本号是否存在** 访问[Maven中央仓库](https://mvnrepository.com/)查询$jakarta.annotation-api$,发现最新版本为$2.1.1$,但该版本未在仓库中发布[^1]。实际可用版本包括: ```xml <version>2.0.0</version> <!-- Jakarta EE 9 --> <version>2.1.0</version> <!-- 最新稳定版 --> ``` 2. **修正pom.xml配置** 将版本号改为$2.1.0$: ```xml <dependency> <groupId>jakarta.annotation</groupId> <artifactId>jakarta.annotation-api</artifactId> <version>2.1.0</version> </dependency> ``` --- ### 二、排查依赖冲突 1. **查看依赖树** 执行命令检查版本冲突: ```bash mvn dependency:tree -Dincludes=jakarta.annotation ``` 2. **统一Jakarta组件版本** 如果同时使用其他Jakarta依赖(如$jakarta.servlet-api$),需统一版本号: ```xml <properties> <jakarta.version>6.0.0</jakarta.version> </properties> <dependency> <groupId>jakarta.servlet</groupId> <artifactId>jakarta.servlet-api</artifactId> <version>${jakarta.version}</version> </dependency> ``` --- ### 三、清理Maven缓存 1. **删除本地仓库残留文件** 定位本地仓库路径(默认在$~/.m2/repository$),删除目录: ```bash rm -rf ~/.m2/repository/jakarta/annotation/ ``` 2. **强制更新依赖** 执行Maven命令重新下载: ```bash mvn clean install -U ``` --- ### 四、兼容性验证 若项目使用Java EE过渡到Jakarta的组件,需确保所有依赖命名空间已从$javax.annotation$迁移到$jakarta.annotation$,例如: ```java import jakarta.annotation.Resource; // 替换 javax.annotation.Resource ``` ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值